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An analytical study is conducted to determine the

0 fundamental frequencies and critical buckling loads for

laminated anisotropic circular cylindrical shell panels,

including the effects of transverse shear deformation and rotary

* inertia, by using the Galerkin technique. A linearized form of

Sander's shell strain-displacement relations are derived, which

include a parabolic distribution of transverse shear strains.

6 The theory is valid for laminate thickness to radius ratios,

h/R, of up to 1/5. Higher order constitutive relations are

derived for the laminate. A set of five coupled partial

differential equations of motion and boundary conditions are

derived and then solved using the Galerkin technique. Simply

supported and clamped boundary conditions are investigated.

The Galerkin method is tested for convergence to exact

solutions. Comparisons with Donnell shell solutions are

conducted. The effects of transverse shear deformation and

rotary inertia are examined by comparing the results with

classical solutions, where applicable. The radius of curvature

is varied to determine the effects of membrane and bending

coupling.

It is found that the Galerkin technique converges for all

panel configurations investigated; additionally, it is found

k that buckling problems need more terms in the approximations

than vibration problems to obtain proper convergence. The theory

ixts



compares exactly with the Donnell solutions, which are valid up

to h/R = 1/50. As expected, as length to thickness ratios are

reduced, shear deformation effects significantly lower the

natural frequencies and buckling loads. Analysis also shows

that rotary inertia effects are very small. Finally, as h/R is

varied from 0 (flat plate) tc 1/5 (maximum limit), the

frequencies and buckling loads increase due to membrane and

bending coupling.
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VIBRATION AND BUCKLING CHARACTERISTICS OF COMPOSITE

CYLINDRICAL PANELS INCORPORATING THE EFFECTS

OF A HIGHER ORDER SHEAR THEORY

I. INTRODUCTION

Advanced composite materials, so named due to their high

strength and stiffness to weight ratios, are seeing widespread

use in many diverse industries. One of these is the aerospace

industry, where complex shell configurations are common

structural elements. Structural elements consisting of

composite materials offer unique advantages over those made of

traditional isotropic materials in that properties can be

tailored to meet specific design goals. Optimization of

properties through tailoring can reduce the overall weight of a

structure, since stiffness and strength are designed only where

they are required. A lower weight structure translates into

higher performance. (8)

Because of the potentially large spatial variations of

stiffness properties in these composite shell structures due to

tailoring, three dimensional stress and strain effects become

very important. Whereas classical two dimensional assumptions

may be valid for an identical shell structure consisting of

isotropic materials, they may lead to gross inaccuracies for an

1



orthotropic construction. (8)

To ensure a structurally strong and stable product, the

designer needs to know the buckling and vibration

characteristics of the structural elements, along with other

important properties. Cylindrical shell panels are a common

shell configuration in aerospace structural applications and are

one of the few shell elements that may be analyzed analytically,

rather than resorting to a finite element numerical approach.

In light of the above, this thesis focuses on the

fundamental natural frequencies of vibration and the critical

buckling loads of composite circular cylindrical shell panels

including the following:

1. Linear displacement and rotations, and linear elastic

behavior of cylindrical shells and flat plates.

2. Parabolic transverse shear strain and stress modeling.

3. Bifurcation buckling analysis.

4. Harmonic vibration analysis excluding transients.

5. Analytical solution method using the Galerkin technique.

BACKGROUND

There have been many contributors to the research of this

thesis. This section will briefly address previous work related

to this research in an approximate order of what occurred

historically.

Past research has clearly indicated the need to refine the

2



classical Kirchhoff-Love shell theories to better predict the

stability and dynamic responses of composite cylindrical shell

configurations. The Kirchhoff-Love theory assumes normals to

the shell mid surface before deformation remain normal after

deformation, effectively neglecting transverse shear strains.

These classical theories predict shell panels that are too

stiff, resulting in high frequencies and buckling loads. L.H.

Donnell applied the Kirchhoff-Love theory to shallow cylindrical

shell panels.

The need to include transverse shear effects was first

recognized by Reissner (18), followed by Mindlin (12) who

included rotary inertia effects in the dynamic analysis of

plates. The Reissner-Mindlin theory assumes the cross section

remains plane, but is allowed to rotate from the normal with

respect to the mid surface after deformation. Extra independent

degrees of freedom are included, which enables the transverse

shear to be fully described by the shell mid surface degrees of

freedom and the thickness coordinate. This first order theory

does not satisfy the boundary conditions of zero transverse

shear on the top and bottom surfaces of the laminate because of

the constant shear angle assumed. The introduction of a

correction factor helps to alleviate this problem.

Reddy (15), (17) and Soldatos (21) have recently applied a

so called parabolic through the thickness shear strain

distribution to analyze laminated anisotropic plates and shells.

The in-plane displacements are cubic functions of the thickness

3



coordinate, satisfying zero transverse shear strain boundary

conditions on the top and bottom surfaces of the laminate. The

same independent degrees of freedom as used in Reissner-Mindlin

theory are used here, but the need for a correction factor is

* eliminated.

It is this higher order transverse shear theory upon which

the strain-displacement relations for this thesis are based.

OBJCTIVES

There are four main objectives to this thesis. First is

the development of a higher order set of linear strain

displacement relations for the cylindrical panel that

incorporate parabolic transverse shear. The relations could be

regarded as a linearized form of Sanders equations, applicable

to deep panels (almost complete cylinders). The theory is not

* limited to shallow panels as is Donnell theory. (1) The strain

displacement relations result in higher order constitutive

relations for the panel. The second objective is the analytical

solution for the fundamental frequencies and critical buckling

loads of the cylindrical panel for different geometries and

boundary conditions. Third, the method will be used to analyze

the effects of shear deformation, rotary inertia, and radius of

curvature. Intrinsic in this analysis is the determination of

the maximum thickness to radius ratio allowed under the

conditions of assuming zero transverse normal stress. And

C4



fourthly, verification of the results by comparison with other

approximate methods and classical methods, where applicable.

APPROACH

A logical approach is taken to complete this thesis. The

displacement field for the anisotropic circular cylindrical

panel, that is a function of the mid surface degrees of freedom,

is developed based upon Reddy's (15), (16) ,(17) and Soldatos'

(21) parabolic transverse shear strain model. Linear orthogonal

curvilinear coordinates from Saada (19) are used to derive the

strain displacement relations. These relations include higher

order terms, applicable to the analysis of deep panels. Basic

principles from Jones (9) are used to develop the higher order

constitutive relations for the laminate. The kinetic energy,

strain energy, and potential energy are each separately derived

using principles from (11), (20), (5), and (7). Hamilton's

principle is applied to extract the equations of motion and

boundary conditions, which are then solved using the Galerkin

technique.

To solve the equations, the degrees of freedom are

approximated by admissible functions: those that satisfy

geometric boundary conditions. The Galerkin equations are

generated with the aid of MACSYMA (25) by substituting the

admissible functions into the equations of motion and boundary

conditions. A Fortran program is written which formulates the

5



eigenvalue problem from the Galerkin equations. The program

yields the desired natural frequencies and/or buckling loads and

their corresponding eigenvectors for a particular input

geometry, ply layup, and boundary condition. Simply supported

and clamped boundaries are analyzed.

Results are compared with other approximate solutions and

classical solutions, where available. Also, to ensure valid

results, the Galerkin technique is tested for convergence, and

transverse normal stress effects are analyzed.

6



II. THEORETICAL DEVELOPMENT

The first step in the theoretical development for this

thesis is the derivation of the displacement field based upon a

through the thickness parabolic transverse shear strain

distribution of the laminate. The LINEAR orthogonal curvilinear

coordinate strain-displacement relations will then be derived.

Next, anisotropic thick cylindrical shell panel theory will be

discussed. From there, the kinetic energy, strain energy, and

potential energy due to external forces will be derived and used

in Hamilton's principle to formulate the equations of motion and

boundary conditions for the panel. Finally, Galerkin's

technique will be applied to approximate the differential

equations of motion and boundary conditions. Galerkin's

technique will be used for two different boundary conditions:

all sides simply supported and all sides clamped.

STRAIN-DiSPLACEMENT RELATIONS

The coordinate system for the circular cylindrical shell

panel and the degrees of freedom to be used in the theory are

shown in Figure 2.1. The x and y axes are located at the mid

surface of the laminate (z = 0). The degrees of freedom

u (X,,t), vo(x,y,t), and w(xy,t) are the laminate mid surface
00

displacements in the x, y, and a directions, respectively. The

degrees of freedom W x(x,y~t) and w y(x,yt) are the rotations of

the laminate cross section from the normal at the mid surface

7



with respect to the x and y axes, respectively. R is the radius

of curvature, h the laminate thickness, a the length in the x

direction, and b the length in the y direction.

z b

W ,,

* Y

x/ //R
VV

//
//

* /
//

// /
\ //

\\ /

Figure 2.1 Shell panel coordinates and degrees of freedom

In order to determine the displacement field, the

transverse shear strains, r zand r E need to be modeled. In

8



7i

classical laminated shell theory, through the thickness shear

deformation is neglected according to the Kirchhoff Love

hypothesis that plane cross sections remain plane and

perpendicular to the laminate mid surface after deformation. A

displacement field that is a first order function of z is

required in classical shell theory. Bowlus (3),(4) and Palardy

(13) in their flat plate work modeled transverse shear strain

using Mindlin plate theory, which also required the use of a

first order displacement field. Mindlin plate theory assumes

the cross section remains plane, but is allowed to rotate from

the normal with respect to the mid surface after deformation.

The assumption of no cross sectional warping introduces error,

especially at the top and bottom surfaces of the laminate, since

the model does not match the boundary conditions of zero

transverse shear strain there. This error is reduced by the

introduction of a shear correction factor. This thesis models

transverse shear strain parabolically wherein the strains are

maximum at the laminate mid surface and are zero at the top and

bottom surfaces, satisfying the boundary conditions. Figure 2.2

illustrates the transverse shear concepts discussed above.

To achieve the desired parabolic transverse shear, a higher

order displacement field is required, as apposed to the first

order displacement field used in the Classical and Mindlin

cases. The coordinate displacements in the x and y directions,

u and v, will be cubic functions of z; the displacement in the

z direction, w, will be constant with respect to z. From Reddy

(16) and Saada (19), the generalized displacement field is:

9i



u(xy,z,t) = u0 + zw x + z 2 + z3e1

v(x,yzt) =i , + .)o zviy + Z20 2 + Z3o 2

w(x,yt) = w (2.1)

where 01, 02j al. and e2 will be chosen to satisfy the boundary

conditions of zero transverse shear strain at the laminate top

BEFORE DEFORMAT]ON

1Z Plane Cross Section

. x

AFTER DEFORMATION

No De format ion
Kirchhoff Of Cross Section

[ IPM ind I in J

Parabolic

Figure 2.2 Transverse Shear Strain Models
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and bottom surfaces.

Linear orthogonal curvilinear coordinates are used to

develop the strain-displacement relations. (14),(19) For a

circular cylindrical shell panel these relations reduce to:
£ = U,

x x

1y I+ z IV y +

R

Y= + V,
R

yz = 1 W, + V,
lZ+ Z_. y R z

kR

xz U z +  Wx (2.2)

where ( ),x represents partial differentiation with respect to x

and so on. c is assumed equal to zero. This implies that a

change in length in the normal (z) direction of a cross section

perpendicular to the mid surface is not considered, and is

regarded as an accepted inconsistency in plate and shell theory.

In reality, cz is not zero, but is small compared to the other

strains. For the laminate, it means there are discontinuities

in cz at the lamina boundaries, but they too are small.
z

The Donnell cylindrical shell panel equations assume
R

in Eq (2.2). As shown in Eq (2.33a) later in this chapter, this

assumption limits Donnell theory to be valid only for small hR

ratios. With no transverse shear, the maximum h/R limit under

Donnell assumptions is approximately 1/500. (23) As will be

shown, with transverse shear included, the Donnell equations are

valid up to h/R equal to approximately 1/50. (16)

11
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For simplicity this thesis assumes = 0 for the

* transverse shear strains, y and r only. (The limitations

of the model resulting from these simplifications are discussed

in Appendix A.) For the membrane strains rx 0 C and rYxy the

following polynomial expansion is made:

z R

This approximation allows the strain-displacement relations to
h

be valid for deep panels, with an h maximum limit of

approximately 1/5. (See Dennis (8) and Appendix A.) The

transverse shear strains in Eq (2.2) become:

Y = V, + W, -v

yz z Y R

•r = U, + W,xz z x

If one sets ryz(x,y,±h/2,t) = 0 and rxs(x,y,±h/2,t) = 0 to

satisfy the laminate surface boundary conditions, then from Eq

(2.1) it can be shown that (see Appendix A):

1 =02 = 0

eI = k(wx + w,x ) e = k(wy + W,Y)

where k = The displacement field then becomes:
3h2

U(X,y,zt) = uo + zw x + z3k(w x + w x )

v(x,y,z,t) = (1 + -- )v 0 + zwy + Z3 k(Wy + Wy)

w(xy,t) = w (2.3)

Using this displacement field in Eq (2.2), the

12



[-77-_,

strain-displacement relations become

C = UOIx + ZWxIx + Z3k(wx +W

S=V + w + z Z2 + Z3k(y +W
y o,y y-y -yy y, y yy

z Mw( y + w, yy)

"xy = y + + z + +--R (Vo, - uy

1 Z-Wx, + z3k(w +W +2W, )
R y y yx XY

1 4
R z k(wx,y + wxy)

yz = Wy + W,y + 3kz2(Wy + W,y

?xz = wx + Wx + 3kz2 (Wx +W, ) (2.4)

Shorthand notation can be introduced to rewrite the

strains as follows:

o 0 0ox
LX LX X 2 0

o 2
y y Y Y Y Y

Y = + Z.6 + 2 X + z3 X z 4. X3xy y x xy x

YZ yz 0 YZ 0 0

.XZ 0 1 0 0 (2.5)

(Note the superscripts on the x terms are not exponents. They

are for identification purposes only and simply distinguish

13



among the high and low order curvature terms.) The strains at

the laminate mid surface are:

Ex uO,X
0 W

y o,y R

r XY UO, y Ol X

,yz 0  
Wy + Wy0

rxz Wx + W, x (2.6)

and the curvature terms (n) due to bending and shear deformation

are defined as follows:

x wx, x

Y W y __

+ + - R- ( -u

xy W Xy +ty, x O, X O y)

y X, y
1 1

yz 3k(wy + W,y

x Xa 3k(wx + w, x )

Slk(w y, y W, yy)

xx,y +y,x + 2w,1'1 = [ +
xRy I (2.7)

14



ANISOTROPIC THICK CYLINDRICAL SHELL PANEL THEORY

Lamination theory incorporates constitutive relationships

for an orthotropic lamina through the shell panel thickness

resulting in expressions which approximate force resultants in

terms of displacement functions. This theory provides concepts

which are required in the subsequent development of the

equations of motion and boundary conditions. The constitutive

relationships are developed for the basic building block, the

lamina, to the end result, the structural laminate. The end

results of this section are the laminate stiffness terms and

force resultants.

The plane stress constitutive relationships for a single

orthotropic layer in the principle coordinate system shown in

Figure 2.3 are

y

F i ber s

Figure 2.3 Lamina Material Coordinates

15



y = 12 822

Xy) 0 0 $ 66 Tr

Note [S44 0 {::xzJ 05$55 Txz (2.8)

Note that a' = 0 for plane stress. That is, the individual

laminae are considered to be thin enough that the average value

of az across the thickness is negligible. The S are

compliance terms and may be written in terms of the lamina

engineering constants as:

SI

1
~12E2

S122 E2

1
$66 = G12

12

S44 = G1

S55 =- (2.9)

where Ei are Young's moduli in the ith direction, .. is
1 1J

Poisson's ratio for transverse strain in the jth direction when

stressed in the ith direction, and Gi is the shear modulus in

the i-j plane.

Equation (2.8) may be inverted to give the relationship of

the stresses in terms of the strains:

16



x 11 Q12 1 1;
= 12 Q22 0

Txy 0 0 Q6 rx"

T~ 0 0 r
xz 5] xz (2. 10)

where Q are the reduced stiffness terms and are defined as:

Q1E
1 V "12 21

Q12E2  21E_ 1

==

Q1 E 1-12211-121

Q22 = 1 - 12 V21

Q66 =G12

Q44 = G23

Q55 =G31 (2.11)

A structural laminate consists of N laminae oriented at

different angles with respect to each other. The previous

constitutive relations apply only to Figure 2.3 where the

lamina-fixed 1-2 axis system is aligned with the laminate (or

global) x-y axis system. If the 1-2 axis system is not aligned

with the x-y axis system but rather is at an angle e (see Figure

2.4), the reduced stiffness matrix, [Q.J, must be transformed.

17



Figure 2.4 Arbitrary Lamina Coordinates

The transformation matrices applied to the stiffness terms in Eq

(2.10) to reflect the shift in the laminae axes are defined

below:

[1 Q1~2 0 1 c 2  s 2 -2os

For Q 2 Q22 , T = 2  c2  2cs
66 Q cs -cs 0z s6

0 Q55] s 0

where c - cos(e) and s - sin(e).

The transformed reduced stiffness matrices then become:

=[T ][Qi3  T JT

18



From (9), the lamina constitutive relationships ean now be

expressed in laminate coordinates as:

CY '4 1 4 2 4 i f xl
= Q12 Q22 Q26

X k  416 426 466 Jk rxy

Sxzk 445 455k xz (2.12)

where k denotes the kth lamina and the individual Q are

computed as:

QII = Q11cos 4& + 2(Q 12 + 2Q6 6 )sin2ecos2e + Q 22 sin
4e

Q12 = (Q + Q22 - 4Q6 6 )sin2ecos2e + Q12 (sin 4e + cos 4e)

Q22 = Q1 1si n 4e + 2(Q12 + 2Q66 )sin2ecos2e + Q2 2 cos e

Q16 = (Q - Q12 - 2Q6 6 )sinecos
3e + (Q12 - Q22 + 2Q6 6 )sin

3ecose

Q26 = (Q - Q12 - 2Q6 6 )sin3ecose + (Q1 2 - Q22 + 2Q6 6 )sinecos
3e

Q = (Q + Q - 2Q12 -2Q66)sin2ecos2 e + Q66 (sin 4e + cos4e)

Q44 = Q4 4cos
2e + Q5 5 sin 

2e

Q45 = (Q4 4 - Q5 5 )cosesine

Q55 = Q55 cos t + Q44sin e (2.13)

Finally, substituting the expressions for the strains in Eq

(2.5) into the constitutive relations in Eq (2.12), the stress

in the kth lamina of the structural laminate is expressed as:

19



x 411 F12 41 6" x I 3 x0

2 
0

j 3.S + Z.{u:J
y +

2

Ti y = 44  4451 rr z{T j [z~ 445  455 k 11: +,ZO z 2 bYatJ J (2.14)

The resultant forces and moments and the higher order

resultant quantities acting on the laminate are obtained by

integrating the stresses in each lamina through the laminate

thickness. Thus, for the laminate with N laminae shown in

Figure 2.5
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Figure 2.5 Geometry of an N layered laminate

the resultant forces and moments and higher order quantities

are:

1  1  S 1  1 1h/2

N2 2 I 2 's P 2  L2  = y (1,z,z ,z ,z )dz

S6  P6j L6  -h/2

N x

Z. J Zk yj(1, Z2,2 
3 z4)dz

2 Jh/ 2  (y, (1,2 )dz N k yz (1,22 )dz

1kh/2 xz k=1 k_

xY~k

(2.15)
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where {NiI and {Q } are the resultant forces, *M1} are the

resultant moments, and {Si), {Pi1 , {Lil, and {Ri} are the higher

order quantities resulting from the higher order

strain-dimplacement relations.

By substituting Eq (2.14) into Eq (2.15), thereby

expressing the stresses in terms of the mid surface displacement

quantities and the transformed reduced stiffness matrices, the

integration is simplified because the mid surface values are

independent of z and can come out of the integral and summation

signs. (9) This allows the following notation to be adopted for

the integrated laminate stiffness matrices:

(A i, B i, Dii, E i, Fiji Gij, H i , Ii, J ij) =

i. iak 2 z3,45 7 8
2 22 26 (1,z,z , z ,z ,z ,z ,z )dz[Q12 Q2 Q26 /  Z k-2 45 7

k=1 QI6 Q26  is66 k k-

i,j 1,2,6

For the transverse shear:

N4 44 1 k ( ,2' 4
(A. ) = [ z )dz

kll=I 45 55] k 'k-1

i,j = 4,5

(2.16)

Now Eq (2.15) may be written as:
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( AJ (d Bed [ DJ (d EJ ( l FJ Pd aly
FI [ Bi1 [ ] [ .. J1 [ £ G J 101

I o

S• 
0

li 2 1 D[,] [E] Fj] [Gij [ 1 I I

f<Q2l A4 4  A45  D44  D45  "Y ,j:i,26

L1J = A45  A55  D45  D55  z"
R2J D44  D45  F44  F45  K(y=

D 45  D55  F45  F55

(2. 17)

where the large matrix above is (15 x 15) and each of

its submatrices are the (3 x 3) matrices in Eq (2.16).
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EQUATIONS OF MOTION AND BO1NDARY CONDITIONS

The displacement field, strain displacement relations, and

the laminate resultant quantities in Eq (2.17) will now be used

in the energy formulation to find the equations of motion and

boundary conditions.

The fundamental equation used in this development is

Hamilton's Principle:

(2 6T - 6U - 6V dt 0

t 1 (2.18)

where

T = kinetic energy

U = strain energy

V = potential energy due to external forces, and 6 is the

first variation. This section will be devoted to the derivation

of the kinetic energy, strain energy, and potential energy, and

finally to the application of Hamilton's principle. The result

will be five coupled partial differential equations of motion

plus their associated boundary conditions.

The kinetic energy for the structure is defined as

T b + v + w2 )dzdxdy
0 0 -h/2 (2.19)

where p is the mass density (11), (20).

Taking the partial time derivatives of the midplane
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displacements and squaring, the following is obtained:

u2 • *2 3 ( + 3 uw 2 4 2z6)2SUo + (2z + 2kz)UV x + 2kz UoW + (z + 2kz + k z

4 2 6 ' 2 6 2
+ (2kz + 2k z )xxWx + k z x

2 (1 + 2--)V*2 +. + - )2z + 2kz3) v,,Wy4 2[1 + -)k. 3 w ,

+ (z2 + 2kz4 + k2 z6 )W 2 + (2kz4 + 2k2z6 ),w y y + k2 6W, y2

.2 *2
W =W (2.20)

By substituting Eq (2.20) into Eq (2.19) and making the

following definitions for the mass moments of inertia:

(ii, i23 ,I14,I5,I7) j h/2(l 2 2,z,z, z z)dz1

-h/2

S + 2

I2= 12 + kI4

I +-L +M +
2 = 2 + -3 + k 4 + 5

I = -kI4I3 4

13 -kI 4 - R 5

14 = 13 + 2ki5 + k2 17

I5 = -kI5 - k2 17  (2.21)

Eq (2.19) becomes:
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T= u 2 iuo, + 2 f2Uox 2 Iu w + -2 2 ,
0 0

2 2 2 0 . . 0

+2 + 02 + 21 2 o1W,

S 4Wy 2 - 275WyWy + k2 I7Wy 2 + 1w 2)dxdy (2.22)

Taking the first variation and collecting terms gives

the following result:

6T = jb IiU + "I2Wx - T3Wx)6uo + (Y2Uo + I4Vx - 7 5 wx)6Wx

0 0

+ (-f 3 uo - 5 + k 2 I1W, )6w, + (I + I2  I3 W,)6v

W+ -6 +(-w.T~ + k2 IW
(12 v + I4 WY - 5wy )6  +(-3 vo - 5 7 + wy)6w y -

+ I 1 Sw)dxdy (2.23)

The following steps are taken to obtain the final form of

the variation in kinetic energy: (1) Integrate Eq (2.23) by

parts with respect to x and y (for this procedure, see Appendix

B) for the terms 6w, and 6w, ; (2) Integrate the completeX y
resulting expression by parts with respect to time; (3)

Collect terms; (4) Neglect the variations of the degrees of

freedom at the endpoints t1  and t2 ; and (5) Neglect time

dependant boundaries, since only harmonic problems are

considered. The following is obtained:
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Jt2 6T t t b j{-+TW ~~6 0 -( 1 v

1Td 100 -

12 Wy -3 w1 )6vo - [13 u0 x + ISVx,x + 1 3oy

k217 (w, __ + ;,w,,) + l 5 y,y , -112;o + 4x

-5-')6Vx - (I2 'vo + I4 y - I5w'6Wy ldxdydt (2.24)

The strain energy is developed following the procedures

outlined in (11), (14) and (20). The first variation of the

strain energy may be written:

0 0 h/2

T xz6r)xz dzdxdy

(2.25)

By substituting the strain-displacement relations in Eq (2.5)

into Eq (2.25), integrating with respect to z, and using the

resultant quantities in Eq (2.15), the first variation of strain

energy may be rewritten as:
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Ib laINN6

6U = 1 6-[ 0 + M 6xo + p162 + N 6E 0 + M 6x 0 + S 6txJxJLM2 1y + $22y

0 0

+p6uyZ + L6y +1N66r + M66x o s, +p
2 + 2 y 6 6y 6 xy 6 xy 6 xy

L66 +Q 26yyz + R26y + Q16xz
0 + R1c6w')dxdy

(2.26)

Substituting the expressions for the mid surface strains and

curvatures in Eqs (2.6) and (2.7) into Eq (2.26) and then

collecting terms, the following is obtained for the strain

energy:

6U= jb Ja{N,6uo, + 6u + N 6v + -N 2 6w +

0 0

(N6 + -)6vo, + kP 6w, + (kP2 - k1 6L2 ),w, +

S(2kP 6 - k j L6 )6w xy + (Q2+ 3kR 2 )6w, y + (Q1 + 3kR1 )6w, x +

(M1 + kP 1)
6 W,'xx + + 3kR1)6vwx + (Q2 + 3kR2 )6Wy +

M2 - S + kP R -kL )6WY, + (M6 + kP6 ) 6y, +

-M6 -S6 + kp6  kL)6W' ,}dxdy (2.27)

Eq (2.27) is integrated by parts according to Appendix B to

obtain:
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6U = - Nlx - N- N2,y- -

00

1 x 6 v + (k(Plx + P2y + 2P1,
2R M6, o) 0 1, + + 2P6 ,xy ) - Q2 ,y - -

3k(R 2 + RIx) + (N 2 - ML + L6 ,x1)])6w + (3kR 1 -

MP1, x + P6,y) - M - 6,y + Q1 + -(S 6 ,y + kL6, y)) 6w + 

r3kR2  M(P2  +6x) + (S +k
2 - -6x 2,y R 2,y ,Y -

6 x + Q2 )6WY }dxdydt

SN 1 6U + +  
6 6 V + (-k(Pl,x + 2 +1~~ ~ ~ 02N RN'o+P6,y) + Q1 +

3kR1 + -L-kL6 J6w + (M1 + 2kPl)6W + (M6 + kP6 )6Wy 1 dy1 R ,1 x 6 6x=O

" j8 { (N6 21R°M o 6u0 +N 2 
6 v, + (-kP2,. + ,P.,+ Q2+

0

3R + Mk(L2 ,y + L6,x))6w + 6 + kP + +(-S6 -L6))6 x

+ + 2k 2 + -1-(-S 2kL))Wy } yO dx
2y=0

+ I x:
kL2P 6  R y0 I x=0 (2.28)

The last component of the energy formulation to consider is
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the potential energy due to external forces. The only external

forces considered are inplane forces that will bifurcate the

laminate in buckling: ie, those forces that will create

out-of-plane displacement. In-plane inextensibility is assumed

in the bifurcation analysis. Therefore, only nonlinear bending

strains need to be considered. The linear and nonlinear bending

portions of the membrane strains at the laminate mid surface are

from Saada (19):

1 2
zx  2 w, x2

=w + w 1 yW2
Ey R + 2 y

YXY =W, XW , Y

The expression for the potential energy then becomes:

= b a{i~--w 2 ~ 22 R+-~w) + R W, ,y }dxdy

00 (2.29)

where N1 and N2 are externally applied loads per length in the x

and y directions, respectively, and N6 is the externally applied

inplane shear load per length. (See (5) and (7).) This thesis

will only be concerned with axial buckling in the x direction,

but will develop a general formulation. Taking the first

variation and collecting terms:

6V (i w, x + N6w y x + ( 2w, + 6w, x)6 wt y

0 0

+ -N 26w }xdy

(2.30)

After integrating by parts and collecting terms, the final form
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of the potential energy becomes:

6V = 1-'jNw - 2RxW, + R W }wdxy

0 0

+j(NlW,,x + N6wiY)6Wx=.d +J W + 6 ,)Wyb 0 (2.31)

0 0"

The expressions for the first variations of kinetic,

strain, and potential energy in Eqs (2.24), (2.28), and (2.31)

are used in Hamilton's principle, Eq (2.18), to obtain:

t 2 Ib (a{I~ -- "L

t {(- - I2 x + f3 Wx + 1,x + N6,y 2R 1'6, 6 01l 0 0
+ + N -1 6,)6vo

(--f'I1o  -f"2* y + f3';w'y + 2,y N6,x +216

0-x T + k 2 1+ )-
3 k5 x,x 3 7oy xx yy

I5w y - 1w - k(P 1,xx + P2 ,yy + 2P6,xy) + Q2,y+

+ 3k(R 2  + ) [N2 - k(L
1,x 2,y 2 1,k + L6 , ] +

N1W, xx
+ 2N6W, xy 2 (.--R - wyy) ]6w

SI2Uo I4 Wx + T5W'x + k(Pix + P6 ,y) + M1,x + M6,y

31R1 -1 - -- (S6 ,y + kL6 ,y))6x

+ (-2'Vo - T4 y + T5 W'y 
+ k( P2,y + P6, x ) + M2,y + M6,x-

3 Q 2  - R(S2y + kL 2 ,y))6y } dxdydt
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S2 jb{ N16uo + (N6 + - 6--t6)6vo + (-k(Pix + 2P6,Y) + Q1 +

1

1- -- 6, y + Nl w , + R6w, y6w + (Ml + 2kP)6 x +3kR1 + R k, wy x

(H6 + kP6)6w y dlx:0dydtIx=O

-Jt2 J{ (N6 - -- H 6 )6u0 + N2 6v 0 + (-k(P 2 y + 2 P6,x) + Q2 +

t1 0

UR + ---- k(L2  + L 6 ) + R2W, + R 6Wx)6w +

(H + 1CP + 4L(S6 kL ))6wx +

+ 2 + d-(-S 2kL ))6v, : dxdt

-t2f k(2P6 R L 6 w} I:: dt 0 (2. 32)1l y=O x=O"

The double integral over the domain in Eq (2.32) contains the

five equations of motion. The two line integrals are the

geometric and natural boundary conditions along the four edges

of the shell panel, and the last term expresses the boundary

conditions at the four corners. In the double integral, the

variations of the degrees of freedom (6uo, 6 vo, 6w, 6W x, and

6w.) are arbitrary and in general are not equal to zero.

Consequently, their corresponding coefficients must equal zero,

yielding the five coupled partial differential equations of

motion for the panel at any time, t:
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6 uo
6U0

P~ N =JIuo f -13',x + N6 ,Y 2R 6,y 1 0  2 x 3

6v:
0

N ,Y + N ,x + 2R 6,x -o 2y 3 w+",

6 w:

- ,xx + P2,yy + 2P6,xy) + Q2 ,y + Ql,x + 3k(R 2 ,y + Ri,x) -

1I3Uo0, x + I 5wxx + V - P k 21 7(w xx + W , yy) + TI5 y y + 1 A

6Wx :

1 L

1, + 6,y + 6,y 3k1 1 R (6,y 6,y

-u° + +4x  T5 x

6 Wy:

2,y+ P6 ,) +M + M6 ,- 3kR - 2 - -]-(S2,y + kL2,y)

I2 Vo + T4Wy - I5w'y (2.33)

These equations of motion will simplify to those of other

authors for certain applications. If R 4 c in Eqs (2.21),

(2.32), and (2.33), the equations of motion and boundary

conditions reduce to those of a flat plate with parabolic

transverse shear and rotary inertia. (See (14), (15), and

(17).) If the following terms are deleted from the equations of

motion in Eq (2.33):
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6u -
0V 2: ---- 6, y

6v 10 2- -- 6, x

16w: R L 2,L2 y + L 6 x)

6Wx:- -V-(S6 + 6,y

61p: - (S2 + l2 (2. 33a)
y R ( 2, + k 2, )

the equations of motion reduce to the Donnell equations of

motion as presented by Reddy (16). For h/R % 1/50, the terms in

Eq (2.33a) are small relative to the other terms in Eq (2.33),

thus establishing the 1/50 limit used by Reddy.

The general equations developed so far need to be tailored

to meet the needs of the specific circular cylindrical shell

panel to be considered in this thesis. First of all, this

thesis will only consider symmetric laminates: that is,

laminates that are symmetric about the mid surface with respect

to both material properties and geometry (fiber orientation

angle, e and thickness, tk). Therefore, the following

stiffness matrices from Eqs (2.16) and (2.17) will drop out (9):

' I B]= [ Ei]= [ oi]= [ I] [ 0 ] (2.33b)

Additionally, since p is constant with respect to z (all laminae

have the same density), the inertia terms in Eq (2.21) may be

integrated to yield:
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12 = 14 f 12 = 13 = 0

1 PhI=1 = ph

13 = ph3/12, 15 = ph5/80, 17 = ph7/448 (2.33c)

12 = -N-h 3 /159 1 3' -LPh /60, 14 = 17ph /315, 15 = 4h 3 /315

The last simplification concerns the acceleration terms in Eqs

(2.32) and (2.33). This thesis will consider rotary inertia:

not in-plane inertia. Consequently, the following in-plane

acceleration terms will drop out: u0  0 o u =v = 0.

During the development of the kinetic energy, time

dependant boundaries were ignored because this thesis is

concerned exclusively with harmonic problems. Assuming harmonic

solution forms and applying separation of variables, the five

degrees of freedom and their corresponding accelerations may be

expressed as:

U = u o(X,yt) = U0 (x,y)sinwt

v = v 0 (x,yt) = v0 (x,y)sinwt

w = w(x,y,t) = w(x,y)sinot , w - w(x,y)sinwt = - 2w

Wx = Wx(XYt) = Wx( x ' y ) s i n t , x - xy)sinwt = -2Wx

W y = wy(x,y,t) = wy(X,y)sint, (y -- 2Wy(X,y)sinct = -2 Wy

where to is the natural frequency of vibration. (2.33d)

If these expressions are substituted into Hamilton's principle,

Eq (2.32), bearing in mind that all the resultant quantities

({Ni}, {Mi}, {S(M, {Pi }, {Li}, {Qi , and {Ri}) are functions of
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the spatiaL derivatives of uo  0 , W, wxR and Wy the term sinit

may be factored out from the entire expression and integrated

with respect to time:

2sintdt = - -..1cos~t (2.33e)

Jt 1  tl

The integrand may be c& :eled to the right side of the

equation, leaving Eq (2.32) independent of time.

The concepts presented in these paragraphs are now

incorporated into Hamilton's Principle. Equation (2.32) is

partitioned into five equations. Each contains the equation of

motion plus the associated boundary condition for a particular

degree of freedom. (4), (21), and (23).

Equation (2.32) for u0 yields:

jJ(N +Ny- 4 M6  )6u dxdy +1,x +  6S,y 2R 6,Y
0 0

X6u0x=O dy + J1N6  2R M616uo d=0
0 Ux=a 0 y=b (2.34)

Equation (2.32) for v0 yields:

jb J a( 2 1 0 , + N+ N) v d d2 y -3 w y + N2 y+N 6 ,x + 2R 6,x

0 0

Jb aJ + 6 h2R 6 )6v. X=ad + N 2  y6v0j dx = 0 (2.35)
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Equation (2.32) for w yields:

lb r[f5) w~ + W y) - k 2I17w 2(w,XX + W, y) + Iw + Q1 x

0 0

k(P~x + 2YY+ 2P6 ,xy ) + Q 2 , + 3k(R 2 ,y + R 1,)-

[N k(L 2  + L6 ,) + R11W, + 2N w1,

R2 (R w, w.) ] 6w dxdy +

I -(x+ 2P + Q+ 31R 1 + 1~6,

0

+ N ,+ N ,6 =y+

Ja(-k~r2,y + 2P6x+ Q2+ U2+ -k(L 2,y + L 6,)
0

+N 2 w , + 6 w , X)6w 1~ dx +

k(2P6~ - .+ 6 6 I= 0 (2. 36)
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Equation (2.32) for Wx yields:

Lop r 4 6)wx - 5 w W,'x + x P 6 , + Mlx + M 6y Q1

0

31cR - + U ])wxdxdy1 R (6,y 6,y +

JMI + 2kP1)6Wx_ dY +

0 a

Ja( + kP6 + -_-(-S _kL )WxI=dx 0
0 M6  + k 6  R ( - 6  -k 6 )  x y=b (2.37)

And, finally Eq (2.32) for w yields:

I 4b ja [ yw -y T5 )2Wy + k(P2,y + P 6,x) + M2,y + M6,x- Q2

00

3R -+ kL2 ,))6 dxdy
2 R (S2,y +) +

6b(M + kP6) Wx x=ady +

0

0 The 2 2kL2))6 y (2. 38)

The final step in the development of the equations of

motion and boundary conditions is to substitute the resultant

quantities in Eq (2.17) and the strain-displacement relations in

Eqs (2.6) and (2.7) into Eqs (2.34) through (2.38). With the

aid of MACSYMA (25) to perform the extensive algebraic

manipulations, these five equations may be expressed in terms of

the degrees of freedom and stiffness terms.
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Equation (2.34) for u 0 becomes:

f'21A + 2A1 6u 0 ~ 2 + A v +

Jt 6 6 OPYY+ A 11 u~ +~x 16,X 6 yy 16 o,xx

(A 6 + A12)v0  + kF26w, y + A2wy+ A 12w'x

2F iWi, -k(2F6 + F1 2)w,, 2 (kF6 + De 6)w~-

3 W D ) 1 + D)w( 1 kF +2 ~16 1 D 6)wXI, 2 (F 26 + 26 )wYly 2 66

id?+2 -~D 6 + D1 )w, - 1 1!D( u ))6udxdy

+ jbIr. ox 1 6 y+ A 1 2 vo 4A 1 6vo~x + -[klw,

0

kF 16W X A 12w -(kF 1 2 + D 1 2 )w Yl- (kF 1 6 + D 1 6 )w Xly)}U O 0 dy

+ J{A 16uo x + A 66uo,y + A 2 6 vo0 + A 6 6vo0 x + -R -2 k2w,

kFl 6wxx 2kF66w.. + 26 2 ~26 + 26 )wYly

1 wW +D) -1 F+D)66 F+D 66 )wlx- 2 (k 66+ 66 X~ 2 ~16~ 16 ) X,

1R ~D 6 (v 0 - u 0 ,)+jo Y=( dx =0 (2.39)
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Equation (2.35) for v0becomes:

jb f{2) y 3 (0cabW, y A 16 u 0 ~ + (A 66 + A 2 )u OSX,+ A 26 u 0l,
0 0

+ A 2 2v 0  + A6 6 v0  + 2A2 6 v0 , + 4-(.kF 2 Wi, + A 2 2W

+ . kF 1 6W,, 3 kF2 6 W, + A2 6 i W (kF2 + D)

+ 1 k + Di 6 )w~, - 21 (kF6 + D 6 6 )wxQ - (k22 +

D 2 2 )wY~y + I (kF + D ) .1 (kF +D )
2 66 D6 6 )wIX 2 26 26)Wy,xy

1 1 -dd

Rp D D6 6 (u 0 ~y-vJ~x yvQdd

+ Jo{Al6uox + 6 6uo0 y + 66 vo0 x + 26vo0 y + 4.R!-(- 2 k 2 6 w 1  +

1 kF W, + A w - 1-k w +. k2 6 lxx 26 2 ~66 + 6 6) +l 2 ~16+

111

-i-- R D 6 6 (u Ol , - 'X VX)) 6 V

+ J{A 2 uox + A 2 6 uo0 y + A2 6 vo0 x + A 2 2 vo1y + -R--F2 ,y

0

kF26WXY+ A 2 2w W (126+ D 26)w~ -l

W 2 D 2 2 )wY yp)6Voj lb dx 0 (2.40)
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Equation (2.36) for w becomes:

b Jat 15W(V t ~ + Vt  )l k 2 7W (, + , yy) + (2W + W +

0 0
-2 2

2 Wxy+N 2'Wyy kH22'W yyyy +(6kD 44 + 9k F 44 + A4),y

k2H11 WXx k 2 6W XY-2 (2H 66 + H812)w ,XYY+

(6kD 55 + k2+ A 55 )w,XX-4 26W, XYYY + (12kD 45 + 8k 2 F 4

+ 2A 45 )w, X, - (k2H 2 6 + U 2 6 )w tIY. + (6k 45 + 92F45 +

A 4)w ly- (k 2H 11+ U 1 1 )wx~ - (3k 2H 16+ 3F1 w IX

k(2kH 66+kH 12+2F 66+ F 12)w X + (6D5+ 9k 2F 55+

A55 wx,x -k(kH 22 +F 22 )wy,y + (6kD 44 + 9k 2 4 A 4 4 )w Yy

-k(kH 16 + F 1 6 )w YXXX - k(2kH 6 6 + kH12 + 2F 6 6 + F 12 )w YIXX

-k(3kH 26 +3F 26)w YXY M6D 45 + 9k 2F 4 5 + A 45)w YI +

kFL R 2 U u y - A 2 6u 0  + .2 Ul6 u -A

+ k(2F 66 + F 1 2 )U OIY + kF 2 2 v -JYY A 2 2 v 0  - A 2 6 v 0, -

1 U v + . U v + k2JW, +kFW
2f 6 ,x 2 26o y 4-(-k2 J 2 2 w yy 2 2 w,

-k2 6 W XYY- 2k 2 J12 6 W, XY+ 2kF 2 6 W, X- A 2 2 w -k(kJ 2 6 +

H 2)wXIYY+ (kF26 + D 2 6 )w XY - k(kJ 6 6 + H 6 6 )w XIXYY

k(kJ 22 + H 2 2 )wt Yyyy + (kF 2 2 + D2)YY

k(kJ 2 6 + H 26 )wt ,QX)]}wdxdy
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+ JbNlwX + wY - 2k 2H 26 W, yyy + MDkf 45 + 9k 2F 45 + A 45 )w,

k 2H 11W =-4k 2H 1WX + (6kD 55 + 9k2 F5 5 + A 55)wX

k 2(4H 66 + H 12 )w, xy,- 2k(kH 26 + F 26 )w ysy-k(kH 16 + F 1 6 )w IX

-k(2kH 6 6 + kH12 + 2F 66 + F 12 )w YX, + (6kD 45 + 9k 2F 45+

A 45)w y - 2k(kH 6 6 + F 66 )w IY - k(kH 11 + F1 llw~x 3~H1

+ F16)wxx (6kD5  + 9k 2F5  + A )w + -I- . 2kF 6 u 0  +

3 k + Fv- Fv + Lrk 2 J1W
Sk 1 6U O + k 26 V0OY, 2 16 o,xx R ~6Wyyy

+ kF2 6 W, y - k 2 J16 6 W, XY - k(kJ 66 + H 6 6 )w~y

-k(kJ 2 6 + H 26)W..,]}6w Ix:&dy

k 2 kH 2 w~+ (6kD4  + 9k 2F +A

0

2k H 16 W, X - k (4H 6 6 + H1),X - 4k H 26 W, X + (6kD 4 +

9k 2F4  + As)W,~ - k(kH2  + F26 )w ~~- 2k(kH1  + F)

-k(2kH 66 + kM 12 +2F 66 + F 12 )w XY+ (6kD 45+ 9k 2F 45 +A 5w

-k(kH 22 + F 2 2 )w ly -2k(kH 66 + F 6 6 )w Y,xx 3k(kH 2 6 +F2 6 )w YIcX

+(6kD + 9k 2F 4  + A4 4 ) w + -L [kFu + - u +

k(2F6  + F 2 )u0,~1F 2 , + kFvkF 2 6 vQ, + -[F 2 )

-k2  1 2 J wX 2 2  wIY + 6OX R(F

-2 22 Wyyy -k2166 wp cY 221 26 Wxy XY F2 6 Wx - k(kJ 2 6 +

H 2 6 )w~~ XY k(kJ6 6 + H 66)w,~ XY k(kJ2 2 + H 2 2 )w yyk(kJ26 +
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H 2 6 )w Y.-xy)] I wY=O dx

+ 12k 2 H26 w 1 + 2k 2H 16w, . + 4k2 H66 W, X + 2kkH 6 6 + F 66 )w Xl

+ kk 6+F)XX+2k(kH 26 +F 26 )w Yl + 2k(kH 66 +

66YX+ R - [2 66 u0l - 16 O,X -kF26 v0 ~+ -~(-& 6

+ kJ212 6 W, + k2 6 6 W, xy + k(kJ 26 + H2) l

+ k(kJ 66 + H 6 6 )tx;Y)]WjY= X = (201
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Equation (2.37) for wx becomes:

jb j {I4w2 f x + k(kH2 6 + F2 6 )w'yy + 1 +FI xxx

0 0
- (6kD45 + 9k2 F4 5 + A45 )w, + 3k(kH 16 + F16 )w, + k( 12

+ 2kH6 6 + kH12 + 2F6 6 )w, x.y - (6kD 5 5 + 9k2 F5 5 + A 55)wix +
2 2

(k2 H6 6 + 2kF6 6 + D6 6 )w Iyy + (k + 2kFl1 + D ll)wxxx +

2(k2H16 + 2kF16 + D16)Wx, xy - (6kD5 5 + 9k2 F55 + A5 5 )wx +

(k2H26 + 2kF2 6 + D2 6 )wy Yyy + (k2H16 + 2kF16 + D16)w 
xx +

(k2H66 + k2H 12 + 2kF66 + 2kF12 + D66 + D12)w xy (6kD45

+ 9k 2 F + A w~ + 4- . (kF 66 + D 66U F +

D26w5 45 k yJ6 + 1-)W 2x 6 66yy 2 1

D+ u -k + D,,, )v1++ )
1 (26 26  oYy 2 16 16 + )

( +D )v +-L ((kJ + H)- D +
66 66 oIxy R 26'~ H2 6 )~ yyy26

D 26)w, y+ k(kJ 6 6 + H6 6 )w, XY (2166 + 2kH 66 +F 6w.V

+(k J 26 + 2kH 26 + F 26 )wy, )]}6w~dxdy

+ J~fk(2kH 12 + F 12 )w, yy+ k(2kH 11 + F 11 )w,XX + 2k(2kH 16 + F 16 )w1

" (2k2 H16 + 3F 16 + D16)wxy + (2k2H + 3kF1  + l)xx

" (2k2 H12 + 3kF12 D 2)wy,y + (2k2H16 + 3F16 + D16)w x

+ -or 6 + D 6 )U,3  + . + I Dl)vo x) }6V ,dy
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+ Jk(kH26 + F2 6 )w, yy + k(kH16 + F 16 )w, xx + 2k(kH6 6 + F6 6 )w, xy

0

+ (k 2 H6 6 + 2kF6 6 + D66)wx,¥ + (k2H16 + 2kF16 + D16)wx x +

(k2H2 6 + 2kF2 6 + D2 6 )w viy + (k2 H6 6 + 2kF6 6 + D66)w x +

- 3 + D- (k16+ D16 )uo x - (kF26 +

I )W+ +I( + )W, +
D2 6 )Vo,¥- 2 (2 66 + o, R kJ2 6  H2 6  yy

k(kJ6 6 + H66)w, xy- (kF26 + D26)w + (k 2J 66+ 2kH66+ F6 6 )xly

+ (k2  + 2kH26 + F 26)wY 1' U O y=b (2.42)
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And, finally, Eq (2.38) for wy becomes:

a e J 4{2 -y 5 2w, + k(kH + F )w, - (6 4 + 9k2  +

0 0

A44)w, + k(kH16 + F16 )w, _= + k(2kH66 + kM12 + 2F 6 6 +

F12)w, xxy + 3k(kH 26 + F26 )w, xyy - MD45 + 9k2 F45+ A45)W,x

+ (k2H2 6 + 2kF26 + D2 6 )w yy + (k2H16 + 2kF16 + DI1)w xx

+ (k 2H66 + k 2H12 + 2kF6 6 + 2kF1 2 + D66 + D12), XY

(6kD 4 5 + 9k2F45 + A4 5)wx + (k2 H2 2 + 2kF2 2 + D2 2 )w yyy +

(k2 H6 6 + 2kF6 6 + D6 6 )wY, + 2(k H26 + 2kF26 +

2+ + + 2kA2+ + D )u
(6kD4 4 +9kF + A4 4 )wy + R [ -  26 + 26)oyy -

(kF66 + 2kF1 2 + D66 + 2D 12 )uo,xy - (kF2 2 + D2 2 )vo,0 yy +

1 1 D (vd12W +  D )v

66 + D6 6 )Vo, xx 2 D26)Vo, R (k1kJ22 +

H2 2 )w, yyy - (kF22 + D22)wy + k(kJ 26 + H 2 6)W, xyy + (k2J22

+ 2kH2 2 + F2 2 )w yy + (k 2 J2 6 + 2kH26 + F2 6 )wx, )]6wjdxdy

+ Jo{k(k 26 + F26 )w, y + k(kH 16 + F 6 )w, u + 2k(k 66 + F86)w, xy

+ (k2H2 6 + 2kF2 6 + D2 6 )w y + (k2H6 6 + 2kF66 + D66)w y,x +

(k2H6 6 + 2kF6 6 + D6 6 )w, y + (k 2H16 + 2kF 16 + Dl1)wxI x +

R- 2(k 66  + D6 6 )u 0o )}6ojo
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+ Jk(2kH22 + F22 )w'yy + k(2kH1 2+ F1 2 )w'xx + 2k(2kH26+ F26 )w, -

0

+ (2k2 H2 6 + 3kF2 6 + D2 6)w Xy + (2k2H12 + 3kF12 + D 2)Wx'x

+ (2k2H2 2 + 3kF2 2 + D22)wyy + (2k2H2 6 + 3kF2 6 + D26)wyIx

+4- [- 1 (2k 2  + D26 u (2k?1  + D12  (2k 2 +

D22 )v Y - (2kF26 + D26 )v + y(k(2kJ + H )w, +

k(2kJ2 6 + H2 6 )w, xy- (2kF2 2 + D2 2 )w + (2k 2J2 2 + 31H122 +

F2)Wy+ (2k2J26 + 3k26 + F 2 6 )x y]}6wy y = Odx = 0
22 2yb (2.43)

Several observations can be made concerning Eqs (2.39) to

(2.43). For a flat plate, small deflection theory dictates that

bending displacement is completely decoupled from membrane

displacement. If the radius of curvature, R, approaches

infinity, the five circular cylindrical shell panel equations

reduce to those of a flat plate. The two membrane equations for

u 0 , Eq (2.39), and v0, Eq (2.40), will consist only of

extensional stiffness terms, Ai,3 and spatial derivatives of u o

and vo, as expected. Additionally, the three bending equations

for w, w and wy in Eqs (2.41), (2.42), and (2.43) will consist

only of bending and higher order stiffness terms and spatial

derivatives of w, wx , and wY. If the higher order stiffness

terms are dropped, leaving only Ai and Dii, the three flat

plate equations will reduce to those of (3), (4), and (20),

which were obtained from the lower order Mindlin transverse

shear strain modeling. For R not equal to infinity, membrane
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and bending displacement are coupled. To find the natural

frequencies and buckling loads of the circular cylindrical shell

panel, all five equations must be solved simultaneously. This

solution will be approximated using the Galerkin technique

discussed in the next section.

ki
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GALERKWI TECIQUE

The Galerkin technique is an approximation technique that

will be used to solve the five coupled partial differential

equations. The general concepts of the method will be presented

first, and then its specific application to this problem will be

addressed. Most of the concepts presented here are from (11),

(20), and (22).

The classic Galerkin technique works directly with the

equation of motion of a particular system. For example,

consider the following system (the same form as Eqs (2.39) to

(2.43)):

JJ DEOM0N~x,y))Zx,y)dxdY + JBCl(ZUx,y))6 (x,y) dy -

yx y Ix

+ J BC2(t(xy))6Z(xY) Ydx = 0

x (2.44)

where C(x,y) is the degree of freedom, DEOM(Z(x,y)) is the

differential equation of motion that is a function of C(x,y) and

its spatial derivatives, and BC1(C(x,y)) and BC2(C(x,y)) are the

associated boundary conditions, also a function of C(x,y). The

approximate solution has the form:

C(x'Y) =m- - Anm(X) (2.45)

where AM are unknown constants to be determined later and

Omn (x,y) are known linearly independent comparison functions,

ie, functions that satisfy both the geometric and natural
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(force) boundary conditions of the system. (11) If, say, the

required degree of accuracy calls for M = N = 2, then Eq (2.45)

yields:

C(x,y) = Alloll(x,y) + A1 20 12 (x,y) + A2 1021 (x,y) + A2 202 2 (x,y)

(2.46a)

and its corresponding variation from (22):

6C(x,y)= 6(x, + (x,Y)A + (x,Y)6A + G (x,Y)6A

OA I)A 11  OA 12  &1 GA21  21 &A22  22

= 0 11(x,y)6A 11 + 01 2 (x,y)6A12 + 0 2 1 (x,y)6A2 1 + 02 2 (x,y)6A2 2

(2.46b)

Since xmn(X,y) are comparison functions, the boundary conditions

in Eq (2.44) need not be considered. Therefore, Eqs (2.46a) and

(2.48b) are substituted directly into the equation of motion

only:

J J DEOM( (x y))6C (x y)dxdy = 0

y x

The following results:

J J(DEOM(A 11011 (xIy) + A 120 12 (x,y) + A 21021 (x,y)+ A 22022(x1 y)))

y x

(Oi 1 (xy)6All+ 1 2 (xy)6Al2 + 0 2 1 (x ' y)6A2 1 + * 2 2 (xy)6A2 2)dxdy = 0

(2.47a)
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or

J J(DEOM(A iloII(xY) + A1201 2 (x,y) + A2 1 '2 1 (x,y)+ A2 202 2 (xY)))
"

yx

0 11 (x,y)6A1 1dxdy +

jJf(DEOM(A 1i. 11(x.y) + A 12012(x,y) + A2 1021(x,y)+ A 224022(x3y)))
y x

4 12 (xy)6A1 2dxdy +

J J(DEOM(A11 11(xY) + A 1 2' 1 2 (x,y) + A2 10 2 1 (x,y)+ A 2 202 2 (xY)))

y x

2 1 (x,y)6A2 dxdy +

I f(DEOM(A1 1 ii(xY) + A 1 20 1 2 (x,y) + A2 10 2 1 (x,y)+ A 2 2 0 2 2 (xY))"

y x

0 2 2 (x,y)6A2 2dxdy = 0 (2.47b)

Since the variations of the constants, 6All, 6A12, 6A2 1, and

6A22 are arbitrary, the only way Eq (2.47) can be identically

zero is that each integral go to zero individually. Thus, after

canceling the variation to the right side, Eq (2.47) becomes:

J j(DEOM(A II 1 1 (xY) + A 1 20 1 2 (x,y) + A 2 10 2 1 (x,y)+ A2 20 2 2 (x,Y)))

xy

* 1 1 (x,y)dxdy = 0
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m-7 P M I

1 J[DEOM(A11 Oi1 (xy) + A1 2 01 2 (x,Y) + A2 1 402 1 (xy)+ A2 2 02 2 (xY)))"
xy

0 12 (x,y)dxdy = 0

J J(DEOM(A11 011(Xy) + A1201 2 (x,y) + A2 102 1 (x,y)+ A2 202 2 (xY))•

yx

02 1 (x,y)dxdy = 0

J J(DEOM(A 11 o11 (x1 y) + A12012 (x,y) + A2102 1 (x,y)+ A 22022 (x~y))).
xy

022 (x,y)dxdy = 0 (2.48)

The single equation of motion in Eq (2.44) has been transformed

into four equations which must be solved simultaneously to

obtain All, A12, A21, and A22. A key characteristic to note

here is the variation of the degree of freedom, 6C(x,y), in each

of the four equations has been replaced with a single term of

the approximate series for C(x,y) in Eq (2.46). In general

there will be (M x N) terms in each equation and (M x N)

equations, depending upon the degree of accuracy chosen in Eq

(2.45).

Galerkin's technique will now be applied to the specific

problem of this thesis. There are two major differences between

this problem and the classic problem presented in Eqs (2.44)

through (2.48). First, there are five coupled partial

differential equations rather than just one. To account for

this all five degrees of freedom assume approximate solution

forms as shown (4):

52



WX(x Y) ~ AMW A M (x, y)

W m(XY) Bi_I nmn(xy)

w(x.y) = w__wmn(x,y)

U (X,Y) E E o(xY)

-o n- in on

v(XY) =_ _ Gn vomn(X'Y) (2.49)

where, as before, Amn, B , CMP Ewn and G are unknown

constants to be determined. The second difference is a

fundamental departure from the classic Galerkin technique, and

follows the same line of reasoning presented in (3), (21), and

(23).

By examining Eqs (2.39) to (2.43), it is obvious there are

very complicated natural boundary conditions. It would be

virtually impossible to choose comparison functions to

approximate the series in Eq (2.49). Alternatively, Pxmn(X,y),

Wymn(x,y), w (x,y), uom(x,y), and v o(x,y) are chosen to be

admissible functions: functions that satisfy only the geometric

boundary conditions. As a consequence the Galerkin technique

will be applied to the boundary conditions as well as to the

equations of motion. For the example in Eq (2.44), this means

the line integrals for the boundary conditions are included

along with the double integral for the equation of motion when

the Galerkin equations in Eq (2.48) are generated. The boundary

conditions are treated the same way as the equation of motion:
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replace C(xy) in BCI(C(x,y)) and BC2(C(x,y)) with the

approximate solution in Eq (2.46), and replace 6C in each line

integral with a single term in the approximation series. (Note

that if it were possible to choose comparison functions for the

five equations in Eqs (2.39) to (2.43), which fundamentally --

satisfied the natural boundary conditions, then only the

equations of motion, ie, the double integrals, would have to be

dealt with.)

With the general concepts in hand, the Galerkin technique

will now be applied to the particular boundary conditions used

in this thesis.
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SW*IPLY-SUPORTED BOUNDARY CONDITION

In this section the admissible functions are found that

satisfy simply supported boundary conditions on all four edges

of the circular cylindrical shell panel. These functions will

then be inserted into Eqs (2.39) to (2.43), and then the

equations will be integrated. The equations will then be ready

for the eigenvalue formulation and the subsequent determination

of the natural frequencies and buckling loads.

For the panel simply supported on all sides, the following

bending boundary conditions exist:

At x = 0 and x = a

W:y O

and

At y = 0 and y = b

w = x = 0

As Jones (9) states, there are four kinds of membrane simply

supported boundary conditions possible. An S-2 type condition

is used here such that at an edge of the panel, the normal

displacement is not zero and the tangential displacement is

zero:

At x = 0 and x = a

u0 0 O and v = 0

and

At y = 0 and y = b

u 0 = 0 and v 0 0
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Therefore, the admissible functions in Eq (2.49) become:

Wx(XY) "M l n1 A n cos(mnx/a) sin(nny/b)

w y (x,y) =Bm - n-l Bmsin(mnx/a) cos(n,,y/b)

w(X,Y) =mlI Cmsin(mrx/a) sin(nnry/b)

u°(XY) =m - n-l Emncos(mnrx/a) sin(nny/b)

v 0(x,y) =Ml G msin(mnx/a) cos(nny/b) (2. 50)

The single terms associated with the variations of the

degrees of freedom are:

6 u 0 cos(pnx/a) sin(qny/b)O

6v - sin(pnx/a) cos(qny/b)o

6w -' sin(prx/a) sin(qny/b)

6 - cos(pnx/a) sin(qny/b)

6W - sin(p-x/a) cos(qny/b) (2.51)

Notice the indices in Eq (2.51) are p and q. As explained in

the last section, the single terms that replace the variations

of the degrees of freedom govern the number of Galerkin

W equations. Therefore, the number of terms in each equation is

governed by m and n, and the number of equations is governed by

p and q. (See Appendix E.)

This thesis would not have been possible without the use of

a symbolic manipulation program such as MACSYMA (25). This
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artificial intelligence based program proved to be invaluable in

the algebraic manipulation and integration of the equations of

motion and boundary conditions in Eqs (2.39) through (2.43).

The step-by-step process taken to utilize MACSYMA for

generating the Galerkin equations for Eqs (2.39) through (2.43)

is outlined below. (Note at this point N2 and N6 are set equal

to zero, since only axial buckling is considered.)

1. Substitute Eq (2.50) into the five equations and evaluate

the appropriate derivatives. For example, in Eq (2.39) there

are terms such as uo, yy, W, yy, and V XY that need to be

evaluated.

2. Substitute the single term expressions for 6u o, 6v, 6 w,

6W XPand 6w y from Eq (2.51) into the five equations.

3. Integrate all five equations according to guidelines

outlined in Appendix C. For each equation this includes a

double integration for the equation of motion and two single

integrations for the edge boundary conditions. The results of

the integration depend directly upon the values of m, n, p, and

q; there are nonzero results for only two cases:

Case (1): m= p and n = q

Case (2): m V p, (m + p) odd and n 0 q, (n + q) odd.

If m,n,p, and q do not meet the criterion of these two cases,

the five equations become equal to zero when integrated.

4. Collect terms and simplify the equations.

The generated Galerkin equations for case (1) are shown

below.
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Equation (2.39) for u becomes:

{-2aq2(3h2D66 - 4F6 6 )/(8bh2R)}A mn+

{n2pq(3h2D66 + 6h2D1 2 - 4F6 6 - 8F1 2 )/(24h2R)}Bn

{" 3pq2 (F66 + 4F12 ) - 3nb2h2PA12]/(12bh2R)}C mn-

{n214R2(a2q2A66 + b2 p2A1 l) + a2q2D66]/(16abR2)}Emn -

{I2 pq[4R2 (A6 6 + A12 ) - D6 6]/(16R2)}G mn = 0 (2.52)

Equation (2.40) for v becomes:

{2pq(3h2D66 - 4F 6 6 )/(24h2R)}An +

{n2[a2q2(6h2D22 - 8F2 2 ) + b2p2 (4F6 6 - 3h2D6 6 )]/(24abh2R)}Bn

- {naq(4-r2q2F 22 - 3b2h2A 2 2 )/(12b2h2R)}Cn -

{n2pq[4R2(A66 + A12 ) - D66]/(16R2)}E mn-

{n2[4R2(a2q2A22 + b2p2A66 ) + b2p2D66]/(16&bR2)}Gmn

- {abI 2 /4} , 2B n + {aq7I3 /4}2Cmn  (2.53)
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Equation (2.41) for w becomes:

{(4p[R2(4-2a2q2(8H6 6 + 4H12 - 6h 2 F6 6 - 3h2F12 )

+ 4n2b2p2 (4H1 1 - 3h2F1) + 9a2 b2 (h4 A5 5 - 8h2 D5 + 16F 5 5))

+ 42a2q2 (4J66 - 3h2H6 6 )]/(36a2bh4R2)}A -

q [R24n2 a 2q2 (4H22- 3h F2 2 ) + 4n2b2p2(8H + 4H12  6h 2F6 6

- 3h2 F 12) + 9a
2b2 (h4A44 - 8h 2D44 + 16F 4 4 )) + 42a2q2(4J2 2 -

3h2 H2 2 ) + a
2 b2 h2 (9h2 D2 2 - 12F 2 2 )]/(36ab2h4R2)}B -

{ [2 2 16n2 a 4q 4H 2 2 + a2 b2 q2 (64r2 p 2H 6 6 + 32n 2p 2H 1 2 + 9a 2h4 A4 4 -

72a 2h2D44 + 144a 2 F 44) + 162b4p4Hl1 + 9a2b 4p2 (h4A55 - 8h2 D55

+ 16F55)j + 16n4a4q4J22 + 8n2 a2b2 q 2(2r2p2j66 - 3a2 h 2F2 2 ) +

9a4b 4 h4A2 2 ] /( 36a 3 b3 h4 R2 )}C. -

{-p(8-r2q2F6 6 + 4n 2 q 2 F1 2 - 3b2h2A1 2 )/(12bh2R)}En -

{Iaq(4r2q2F2 2 - 3b2h2A 2 2 )/(12b2h2R)mn =

fbPf5/+ 2 Amn + Inaq15/42B.n- {[16n2(a2q2 + b p2)17 +

9a2b2h4I 1]/(36abh4)+2C. + {2bp2/ (4a)}lCn (2.54)
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Equation (2.42) for w. becomes:

{_[R2[n2a2q2( 16H 66 + 9h 4D 66 -24h 
2F 66 ) +

r262 p2(16H11 + gh4D11 - 24h2 F11 ) + 9a2 b 2(h
4 A55 - 8h2 D55 +

16F 5 5 )) + rn
2 a2 q2 (16J 6 6 - 24h2 H6 6 + 9h

4F6 6 )]/(36abh4R2)}Amn-

{Tr2pq[16(H 6 6 + H1 2 )+ 9h4(D6 6 +D 12 )-24h
2 (F6 6

+ F12 +(36h4)IBn

-{"p[R2r4ff2 a2 q2 (8H66 + 4H12- 6h 2 F66 - 3h2F12)+ 4n2b2p2(4Hl1

- 3h2 F11 ) + 9a 2 b 2 (h 4 A55 - 8h2D5 5 + 16F 5 5)) + 41T2 a
2 q2 (4J6 6 -

3h2H6 6) /(36a2bh4R2 )}Cmn +

{I2aq2 (3h2D66 - 4F6 6 )/(8bh 2 R)Em+

{2pq(3h2D 6 6  4F6 ) /(24h2R)mn =

{-abI 4 /4}'2A. + {nbPT5 /4}A2C. (2.55)
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And finally, Eqn (2.43) for wy becomes:

{- 2pq[16(H66 + H12 ) + 9h
4 (D6 6 + D1 2 ) -

*24h 2 (F 66 + F1 2)]/(36h 4 )IA. -

{ [R2 (n 2a2q2(16H 22 + 9h4D 22 - 24h 2F 22) + n~2b2 p2 (16H 66 +

9h4D6 6 - 24h2 F6 6 ) + 9a
2b2 (h4 A4 4 - 8h2D 4 4 + 16F 4 4 )) +

2 a2q2 (16J22 - 24h2H 2 + 9h4F2 2 )]/(36abh4R2 )}B -

f rr [ R ( 4 2 a2 q2 4 H 2 - 3 h 2 2 2I n b 2p 2(8 H 6 6  + 4 H 12  - 6 h 2 F66

F3h2F1 2 ) + 9a2b2(h4 A44 - 8h2D44 + 16F44)) + 42a2q 2(4J 22 -

3h2 H2 2 ) + 3a
2 b2 h2 (3h2 D2 2 - 4F2 2 )]/(36ab2h4R2)}C. +

In 2pq[3h2(D66 + 2D 12 ) - 4(F6 6 + 2F1 2 )]/(24h2R)}En +

{n2[a2q2(6h2D22 - 8F2 2 ) + b
2p2 (4F6 6 _ 3h2D6 6)]/(24abh2R)}G

- abf4/4 2B. + {naqI5/4}2C. (2.56)

The set of Galerkin equations for Case (2) are shown below.

That is, when m 9 p, (m + p) odd and n q, (n + q) odd, the

following set of Galerkin equations are obtained when Eqs (2.39)

to (2.43) are integrated:
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Equation (2.39) for u0 becomes:

{...2nq [P 2(6h 2D 16 - B16)+ M2 (3h 2D16 -

V 16)]+(3h 2R( P2 _ m2)(q2 - n 2) +}A -

{2amn2q(3h2D2 6 - 4F2 6 )/[bh2R(p2 - n2)(q2 - n2)l}B m +

{4mnqIn2(4b2p2F16 + 6a2n2 F26 ) + b 2(82 m 2F16

12a2 h2A 26 )]/[a3ab2 h2R(p2  m2 )(q2 - n2)]}C +

{4rlq(p 2 + m2 )A 16/(p 
2 _ M2)(q 2 _ n 2))}E m+

{4mq(b2p2A16 + a2n2A)/[ab(p2  m2 )(q2 - n2)l Gmn = 0
(2. 57)

From Equation (2.40) for v becomes:

{-np[14a 2q 2(3h 2D 26 - VF26 ) + 2b 2m 2(4F 16 -

3h 2D 16 )]/(3abh 2R( p2 _ m2) (q 2  n n2) ]}Am

{mn2P(6h2D26 - 8F2 6 )/(3h
2 R(p2 - m2)(q2 - n2)]}B. +

{4mnp l2r2 a 2(2q 2 + n 2 )F 26 - 2n2 22m2 F16 -

3a 2b 2h 2A 26] /(3rra 2bh 2R( P2 _ m2 ) (q2 -n 2)JIC +

{4np(a 2q2 A26 + b2 m 2A16)/[ab(p 
2 _ m 2 )(q 2 _n 2 ))}E m+

2 2 ~2 2{4mp(q2 + n )A 26 /(p m)(q - n2).J = 0 (2.58)
(2.5)
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Equation (2.41) for w becomes:

{Pqn[R2 (l6r2a2n 2 (4H 26- 32F26+ 4n2b 2m 2(4H 16 -

3h 2 F 1 6 ) + 36a2 b2 (h4A45 - 8h 2 D45 + 16F 45)) 4a 2 (4n22n2 (4J2 6 -

3h 2 H2 6 ) + 3b
2h 2 (3h 2D 2 6 - 4F2 6 ))]/[9nab

2h4R2(p2-m 2 )(q2-n2)}Am

+ {mpq[R2(48n2a2n2(4H2 6 - 3h2F2 6 ) + 16 2 2 2 (4H 16- 3h2F1 6 ) +

36a 2b2 (h4 A4 5 - 8h2 D4 5 + 16F 4 5 )) +

162a2n 2(4J26 - 3h 2 H 26)]/9na2bh4R2 (p2 - -2)]IBmn +

{mnpq[R2 256-2(a2n2H26 + b2 m2 H16) + 72a 2b 2 (h4A 45 8h 2 D45 +

16F 4 5)) + 32a 2 (4n 2n2J2 6 -

3b2h2F2 6 )]/[9a2b2h4R2 (p2 m2 )(q 2  n )]}Cmn +

{4npq(2n2nF26 + 2n2b2m2F 16 -
a2 b2 h2 A2 6 )/[nab

2 h2 R(p2 _ q2 - n2)]}E +

4mpq(6n 2a 2n 2F2 6 - 2n 2b 2m 2F 16 -

3a2 b2h2A 26)/(3rra2 bh2 R(p2 - m2 )(q2 - n2)]1G. = 0 (3(2.59)
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Equation (2.42) for wx becomes:

{4nq[32p2 16 + 9h4 (p
2 + M2 )D16 - 12h 2 (Op2 +

2)Fl8]194(P2 _ m2) (q 2 _ n2) ]}A +

{mq[4R2[n2 b2p2(32H 16 + 9h4D 16 - 36h 2F 16 ) + n 2a 2 n2 (16H 26 +

9h4D26 - 24h2F26 ) + 4n2b 2m 2(3h2F16 - 4H16) + 9a2 b 2(h4 A4 5 -

8h 2D 45 + 36F 45)) + 4n2a2n2(16J2 6 - 24h2 H2 6 +

9h4F26) /[9n2abh 42(p2 m2)(q2 _ n)]B. +

jfmnq4R2.FL b 2p2( 8H1 6  3h2F 1 6 ) +n2a 2n 2(4H 2 6  3h2- 26)

4n 2b2m2(4H1 + 3h2F 6 + 9a2 b2 (h4A45 - 8h2D45 + 16F45)] +

4a2[4n2 n2 (4J26 - 3h2H26 ) +

3a2b2h2 (3h2D2 6 - 4F2 6 ))]/[9ab2h4R2(p2 - m2 )(q2 - n2)]}C -

{2nq[3h2(p2 + 2m2 )D1 6 - 4(2p2 +

m2 )F16]/[3h
2 R(P2 - m2 )(q 2 - n2)J}Emn +

{2mq[3b2h2p2D1 6 + 4b 2(m 2  2p 2 )F16 + 2a2n2(4F26

3h 2 D 26)]/[3abh2R(q22 2 - n2)+m = 0 (2.60)-
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And finally, Eq (2.43) for wy becomes:

{np[R2(4-2a2[16(2q2 - n2 )H26 + 9h4 q 2 D2 6 -

12h 2 (3q2 -n2)F2j + 4n2b2m2 (16H16 + 9h4D 16 _ 24h2F 16 ) +

36a 2 b2 (h4 A4 5 - 8h2 D4 5 + 16F 4 5 )) + 47
2 a2 (16(2q 2 - n2 )J26 -

12h 2 (3q2 - n2)H 26 + 9h4q2F 2 6)] /[9r2abh4R2(p2-m2)(q 2 -n2 )]}A

+ {4mp[32q2H26 + 9h4 (q2 + n2 )D26 -

12h 2 (3q2 + p2 )F26]/[9h4(p2 - M2 )(q2 - n2)]}B +

Inp[4R2(4n2a2(4(4q2-n2)H26 - 3h2(2q2+ n2)F26] + 42b 2m 2(4H 16

- 3h2F16 ) + 36a
2b2 (h4A45 - 8h2D45 + 16F 45 )) + 16n 2a2 (4(2q2 -

n2)J26- 3h2q2H2 6)]/9gra2bh 4R2(p2 - m2 )(q2 - n2 )]Cm-

{2anp[3q2h2D 26 - 4(2q 2 _ n2 )F26]/[bh2R(P2_ m2 )(q2- n2 )]}E.-

{2mp[3q2h2D26- 4(2q2_ n2)F 2 6]/[3h2R(p2- m2 )(q2- n2)]}G = 0

(2.61)

Equations (2.52) to (2.61) are now ready to be put in matrix

format and then input into the eigenvalue subroutine to solve

for either w 2 or R-V The details of this procedure are

explained in the next chapter.
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CLAMPED BOUNDARY CONDITION

In this section the admissible functions that satisfy

clamped boundary conditions on all four edges of the circular

cylindrical shell panel are chosen. The following bending

boundary conditions exist:

At x = 0 and x = a

W Wx =Wy

and

At y = 0 and y = b

W px =Wy

The membrane boundary conditions will be the same as those in

the previous section: from Jones (9), a C-2 type boundary

condition.

At x = 0 and x = a

u 0 0 and v =0

and

At y = 0 and y = b

u= 0 and v 0

The admissible functions in Eq (2.49) become:
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Wx(xY) =A1 n Ansin(mx/a) sin(ny/b)

WY(XY) =mi - ni - Bmnsin(m-x/a) sin(nny/b)

w(x,y) =Cml nl Cmnsin(mnx/a) sin(nny/b)

Uo(xy) =m-I n-l Emnos(mnx/a) sin(ny/b)

vo(XY) = ml n Gmnsin(mrx/a) cos(nny/b) (2.62)

The single terms associated with the variations of the degrees

of freedom are:

6u - sin(pnx/a) sin(qny/b)0

6v - sin(p-x/a) sin(qny/b)0

6w -. sin(pnx/a) sin(qny/b)

6W x - cos(pnx/a) sin(q-y/b)

6W - sin(p-x/a) cos(qny/b) (2.63)

And, as in the simply supported case, the indices for the single

terms are p and q; m and n govern the number of terms per

equation, and p and q govern the number of equations.

The procedure for generating the Galerkin equations is

exactly the same as in the last section. However, as outlined

in Appendix C, after integrating Eqs (2.39) to (2.43), four

cases give nonzero results:

Case (1): m = p and n q

Case (2): m = p and n - q, (n + q) odd
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Case (3): m V p, (m + p) odd and n = q

Case (4): m - p, (m + p) odd and n q, (n + q) odd

If m,np, and q do not meet the criterion of these four cases,

the five equations become equal to zero when integrated.

The generated Galerkin equations for case (1) are shown below.

Equation (2.39) for u0 becomes:

0 A + 0B -

{np[n2q2(8F66 + 4F19 ) - 3b2h2A 12]/(12bh2R)}C mn-

{n2[4R2(a2q2A + b2p2All) + a2q2D 66]/(16abR2)}E -

{n2qp[4R2(A 66+ A12) - D6 6]/(16R2)}Gmn 0 (2.64) -

Equation (2.40) for v becomes:

0 Am + 0 Brn -

{naq(4n 2q2F 2 2 - 3b2h2A 2 2 )/(12b2h2R)}C -

{in2pq[4R2(A 6 6 + A12 ) - D6 6]/(16R2)}En-

{n2[4R2(a2q2A22 + b2p2A66 ) + b2p2D66]/(16abR2)+m n -

f" aqI3" /42C. (2. 65)
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Equation (2.41) for w becomes:

0An +0 B -

2 2(3 n2 a b2 2q ( H66 + H12 ) + 9a 4b 2 (h 4 -4 8 44 +

16F 4 4) + 16n2 (a4 q4H2 2 + b
4p4 H11 ) + 9a2 b4p2 (h4A5 5 - 8h2D55 +

16F5) + 16n4 a 4 q422 8 2 a2 b2 q 2 (2p 2 n 2 J - 3a2h222 ) +

9a4b4h4A 2 2]/(36a3b3h4R2)}C -

{np[42q 2 (2F 66+ F 12) 3b 2h 2A 12] /(12bh 2R)}E.

aq(42 q 2F2 2 - 3b2h2A 2 2 )/(12b2 h 2R mn =

{-[162 (a2 q2 + b2 p2 )17 + 9a2b2h41 1]/(36abh4)+2C +

{TT2 bp 2/(4a)} 1 Cm (2. 66)
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Equation (2.42) for w. becomes:
Dj

{-[R2("2a2q2(16H66 + 9h4D66- 24h 2F66 ) +

n2b2 p 2(16H 11 + 9h - 24h 2F1 ) + 9a2 b 2(h 4A55 - 8h2 D +
55 55

16F 55 )) + n2a2q2 (16J66 - 24h2H6 6 + 9h4F66 )]/(36abh4R2)}Amn -

[R2 r2a2q2(6 + 94D -24h 2 F) + rr2b2 216 +
q 2166 26261

9h4 D16 - 24h 2F1 6 ) + 9a2 b2 (h4 A4 5 - 8h2 D4 5 + 16F 4 5 )) +

n2a2 q2 (16J 26 - 24h2H26 + 9h4F26 )]/(36abh4R2 )}B + 

O*C~+O-E +0G = I-abT4 /4b2Amn
0 -Cmn + 0 Emn + 0 - Gmn (2.67)

And finally, Eq (2.43) for wy becomes:

{-[R2(v2a2q2(16H26
+ 9haD26 - 24h2F26) +

n2b2p2 (16H 16 + 9h4D16 - 24h2F16 ) + 9a2b2 (h4A45 - Bh2D45 +

16F 4 5 )) + 2 a2 q2 (16J 2 6 - 24h 2H2 6 + 9h4F2 6 )]/(36abh4R2)}Amn -

f[R2vn2a2q2(16H2 2 + 9h4D22 - 24h 2F2 2 ) + n2b2 p 2(16H66 +

9h4D66 - 24h 2F66 ) + 9a2b2 (h4A44 - Bh2D44 + 16F44 )J +

n2 a2 q2 (16J 2 2 - 24h2H2 2 + 9h4F2 2 )]/(36abh4R2)}Bmn +

O 0 E O~= {-abI 4 /4} 2Bn (2.68
0 Cmn + 0 Emn + 0 -Gmn (2.68)
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The set of Galerkin equations for Case (2) are shown below.

That is, when m = p and n 0 q, (n + q) odd, the following set of

equations are obtained when Eqs (2.39) to (2.43) are integrated.

Equation (2.39) for u becomes:

{-nnpq(3h2D16 - 4F 1 6 )/[2h
2 R(q 2 

- n2) ]}A, -

ITnpq Ph 2(D 66 + 2D 1 2) 4(F 66+ 2F 12+ 6- ~ 2 n2]Bm +

0 C +0 E +0 G =0 (269)

Equation ( 2.40) for v becomes:

{-nn [2a2q2(3h2D 2 6 - 4F2 6 ) + b
2p 2 (4F 1 6

3h 2D 1 6 )]/[6abh 
2 R(q 2 -n 2 )]}IA m -

{ nYT[2a 2q 2(3h 2 D2 2 - 4F 22 ) + b 2 p2 (4F 6 6 -

3h 2D 6 6 )]/[6abh 2 R(q 2 - n 2 )]}B + '/[ q2 n2 2
0-C mn +0 -E n+ 0 -G mn= {abnI 2  B[~q - 2]}2

(2.70)
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Equation (2.41) for w becomes:

nq[R2 12 n2b2p2(4H16 - 3h 2 F 1 6 ) + 4 2 a2n2(4H26 -2

3h2F 2 6 ) + 9a2b2(h4 A4 5 - 8h 2 D4 5 + 16F 4 5 )) + a
2 (4 2 n2 (4J2 6 -

3h2H26) + 3b 2h2 (3h2D2 6 - 4F2 6 ))]/[gab2h4R2(q2 - n2)]}A. +

{qnIR 2 (4n2 b 2p2(B6 H1 h2F6 3h 2F 12 ) +4 2a 2n 2(4H 22

- 3h 2 F 2 2 ) + 9a 2 b 2 (h 4 A4 4 - 8h 2 D4 4 + 16F)44) + a 2 (42n2(4J 2 2 -

3h2H 2 2 ) + 3b
2h 2 (3h 2D 2 2 - 4F 2 2 ))]/[9ab2h4R2(q2 - n2)}B mn+

0C +0 E + 0 G = -{anqT 5 /(q2 n2+2Bmn

(2.71)

Equation (2.42) for wx becomes:

0 A + 0B -
mn mn

{qn[R2(12n2b2p2(4H 1 6 - 3h 2 F 1 6 ) + 4ff2 n 2 a2 (4H - 3h 2F26) +

9a 2 b2 (h4A45 - 2D45 + 16F 4 5 )) + a2 4r 2n 2(4 2 6 - 3h2H2 6 ) +

3b 2h 2 (3h 2D 2 6 - 4F 2 6 ))]/[9ab2h4R2(q2 - n2)]}CM n +

{nnpq(3h2D 16 - 4F 1 6) /[2h
2 R(q 2 

- n2) ]}E -

{vrq[b p (3h D 16 - 4F 16) + 2a ni (4F 26 -

3h2 D 26)]/[6abh2R(q2- n 2 ) ] m n = 0 (2.72)
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And finally, Eq (2.43) for wybecomes:

0An 0 B -

qn [R2 4n2b2p 2(8H66 + 4H12 - 6h2 F6 6 - 3h2 F1 2 ) + 42 n 2a 2(4H 22

- 3h 2 F2 2 ) + 9a 2 b 2 (h 4 A4 4 - 8h2 D4 4 + 16F 4 4 )) + a 2 (4rr 2 n 2 (4J 2 2 -

3h2 H2 2 ) + 3b
2 h2 (3h2 D2 2 - 4F2 2 ))]/[9ab2 h4R2(q 2 - n2)]}C m n +

{-npq[3h2(D6 6 + 2D 12 ) - 4(F6 6 + 2F1 2 )]/[6h2R(q2 - n2) ] E m n -

nq[b2p2 (3h2 D6 6 - 4F6 6 ) + 2a2 n 2(4F2 2 -

3h2D22)]/[6abh2R(q2 - n2 )] m n = {anqI5/(q 2 - n2)+2C.

(2.73)

The set of Galerkin equations for Case (3) in which m 9 p, (m+p)

odd and n = q are shown below.

Equation (2.39) for u0 becomes:

{nmaq2(3h2D6 6 - 4F66 )/[2bh
2 R(p2 - m2) ]}Am n

{nmaq2(3h2D26 - 4F2 6 )/[2bh2R(p 2 - m2) ] }B =  +

Cmn + 0 Emn + 0 Gmn (2.74)
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Equation (2.40) for v becomes:

o2

{tvrpqm(3h 2D 66 4F 66 )/[6h 2R( p 2 m 2 )]IA.

{rpqm(3h 2  - 4F26 ,)/(6h 2R(p - m I2)}B, +

0 Cmn + 0 Emn + 0 • Gmn =0 (2.75)

Equation (2.41) for w becomes:

{mp[R2(4n2a2q2(8H6 6 + 4H1 2 - 6h 2 F6 6 - 3h 2 F1 2 ) +

4r2b2m2(4H11 - 3h2F11) + 9a2b2 (h4A - 8h2 D5 5 + 16F 5 5 )) +

4n2 a2 q2 (4J66 - 3h 2 H 66 )]/[ga2bh4R2(P2 -m 2 ) IA m n +

{mp[R2(12"2a2q2(4H2 6 - 3h2F2 6 ) + 4vr2 b2m2 (4H16 - 3h 2 F 1 6 ) +

ga2 b2 (h 4A4 5 - 8h 2D45 + 16F 4 5 )) + 4-2 a2q2(4J26 -

3h2H2 6 )]/[9a2bh4R2(p2 _ m2)j}Bmn +

0C + 0 E + 0 G = -{bmPTs/(p2 - m2) 2Amn
(2.76)_
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Equation (2.42) for wx becomes:

0 A +0 B -

mn Bmn

Imp[ 1R2na2q~ 66 8 + 4H11 - 6h2F - 3h 2F12  + 4n 2m2 4

- 3h2 F11 ) + 9a
2 b2 (h4 A5 5 - 8h2D5 5 + 16F 5 5 )) + 4Y

2 a2 q2 (4J6 6 -

3h2H6 6 )]/Cga
2 bh4R2 (P2 - m2)]}C -n +

{apq2(3h2D66 - 4F6 6 )/[2bh
2 R(p2 - m2)]}E +

{Tmpq(3h 2D 66 4F66)/[6h2R(p2_2)]_ = {bmPT5/(p2_ m 2 )2C n

(2.77)

And finally, Eq (2.43) for wy becomes:

0 A +0B -mn Mn

Imp[R2(12"2a2q2(4H2 6 - 3h 2 F2 6 ) + 4 2 b 2 m2 (4H16- 3h2F16 ) +

9a2b2 (h4A45 - 8h 2D4 5 + 16F 4 5 )) + 4rr
2 a2 q2 (4J2 6 -

3h2 H2 6 )]/(9a
2 bh4R2 (p2 - m2)]}C +

{itapq2(3h2D 2 6 - 4F2 6 )/[2bh
2 R(p 2 _m 2)]}E +

{nmpq(3h2D2 6 - 4F2 6 )/(6h
2 R(p2 - m2)])G = 0(2.78)

The last set of Galerkin equations is for Case (4) in which npp,

(m + p) odd and n 9 q, (n + q) odd. These are shown below.
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Equation (2.39) for u becomes:

O'A +0 B +0 Amn mn

{4mnq[2n22b2(2p2 + m 2 )F16 + 6n 2a2n22 + --

3a2b2h2A26]/[3nab2h2Rp2 - m 2)(q2 - mn +

{4nq(p2 + mi2 )A 16 /[(p2 - m2 )(q2 - n2)]E mn

{4mq(b2p2A16 + a2n2A 2 6 )/[ab(p2 _ m2)(q 2 _ n2))}Gmn = 0
(2. 79)

Equation (2.40) for v becomes:

0 A mn+ B +

{4mnp[2n 2a2(2q2 + n2 )F2 6 - 2n2m2 b2F1 6

3a2b2h2A 2 6]/[3n a2bh2R(P2 - m2 )(q 2 - n2)]}Cmn +

{4np(a 2 q 2A26 + b 2 m2 A 16)/[ab(p 2 _m 2 )(q 2 _ n 2 )l}E m +

{4nmp(q2 + n2 )A 26/(p 2 _m 2)(q 2 _ n 2 )l = 0 (2.80)
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Equation (2.41) for w becomes:

Jim 0B +

{mrlpq [R2 (2567R2(t2 n 2H 26 + b 2m2 H 1)+72ab 2(h 4A 45 Oh2D 45+

16F 4 5 )) + 32a 2 ( 4" 2 n 2 J 2 6 -

3b2h2F26 )]/[9a
2 b2h4R2 (p2 - m2 )(q2 - n2)}C +

4npq[22 (a 2n2F26 + b2m 2F 16 ) -

a2b2h2A 26]/[nab2h2R( p2 _ m2 ) (2 - n2)1}E +

{4mpq [n2 (6a2 n 2F26 - 2b 2m2 F 16) -

3a2b 2 h2A2 6]/3ra2bh2R(p2 - m2 )(q2 - n2)]}G = O(2.81)

Equation (2.42) for wx becomes:

{8mnpq(16H 16 + 9h4D16

24h 2F 16)/gh4 (p2 - m2 )(q2 - n2)]}A +

{4mnpq[16(H6 6 + H12 ) + 9h
4 (D6 6 + D1 2 ) -

24h2 (F6 6 + F1 2 )]/C9h4(P2 - m2 )(q2 - n2)]}B +

O C + 0 - E + 0 G = 0 (2.82)
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And finally, Eq (2.43) for w. becomes:

14mnpq116(H66 + H12 ) + 9h4 (D66 + D12)

24h 2 (F 6 6 + F1 2 )]/[9h4(p2 - m2 )(q2 - n2)]}A. +

{8mnpq(16H 26 + 9h4 D2 6 - 24h2 F2 6 )/[9h
4 (p2 - m2 )(q2 - n2)}Bmn

+0 Cmn + 0 Emn + 0 Gmn (2.83)

Equations (2.64) to (2.83) are now ready to be put in matrix

format and then input into the eigenvalue subroutine to solve

for either w2 or N
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III. DISCUSSION AND RESULTS

This chapter will describe the computer program used to

calculate the natural frequencies and buckling loads. It will

also give physical descriptions of the circular cylindrical

shell panels used and will describe the subsequent analysis

performed with those panels.

COMPUTER PROGRAM

One FORTRAN program was written for both boundary

conditions. Both programs consist of a main program which

simply receives the user input data and calls two subroutines

that perform the bulk of the work. The first subroutine

calculates the stiffness matrix elements in Eq (2.16). The

second subroutine uses these stiffness terms to set up the

eigenvalue problem, and then calls a subroutine from the IMSL to

solve for the eigenvalues and eigenvectors. A complete listing

of the program is in Appendix D. The program is discussed in

detail below.

The main program, entitled "MAINTHESIS", receives the input

data and calls the two subroutines. The following data is -A

collected:

1) An integer flag ("1" or "2"): "1" to perform a

vibration problem, and "2" to perform a buckling problem
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2) a, length in x direction

3) b, circumferential length in y direction

4) R, radius of curvature

5) h, laminate thickness

6) NPLYS, number of plys in the laminate

7) ei , orientation angle of each ply
8) E1 modulus in the 1 direction

9) E2, modulus in the 2 direction

10) G12, shear modulus in the 1,2 plane

11) V12' poisson's ratio

12) p, mass density (same for each ply)

13) M = N, maximum number of terms in each admissible

function

The main program declares all variables and arrays double

precision and allocates workspace for the eigenvalue

calculations. The largest problem this program will handle is

M=N=10. From Eqs (2.49), (2.50), and (2.62), each admissible

function can be approximated by a maximum of 100 terms,

resulting in an eigenvalue problem that involves (500x500)

matrices. The main program also calculates the following

engineering constants:

V 21 = '12 E2 /E1
GI 1= G12

G2 3 =1. 12

It then uses the ply layup information and the engineering

constants as input to call the laminated stiffness subroutine.
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The laminate stiffness subroutine named "LAMINAT"

calculates the extensional, bending, and the higher order

stiffness elements of Eq (2.16). The following restrictions

apply: the laminate must be symmetric, and only the orientation

angle ei may change from ply to ply (the density, thickness, and

engineering constants remain the same). The subroutine uses the

following input data: h, NPLYS, ei, E1, E2, G1 2, G1 3, G23 , p,

V12' and L21" It first calculates the reduced stiffness terms,

[Qi 1, from Eq (2.11). Then it calculates the transformed

reduced stiffness terms, CQ. ., from Eq (2.13) for each ply by

looping from the first ply at the bottom of the laminate to the

last ply at the top. For each ply, the extensional, bending,

and higher order stiffness terms are calculated and summed

together according to Eq (2.16). The output is returned to the

main program, printed, and then used as input to the subroutine

"GALERK".

Subroutine "GALERK" creates the stiffness and mass/inertia

matrices, forms the eigenvalue problem, solves for the

eigenvalues and eigenvectors, and determines the mode shape along

the midlines of the laminate. In other words, it calculates

w(a/2,y) and w(x,b/2). The subroutine is by far the largest

portion of the entire program and is also the only part of the

whole program that is boundary condition dependant. That is,

for the simply supported boundary condition, the subroutine will

generate the Galerkin equations using Eqs (2.52) to (2.61); for

the clamped boundary condition, the subroutine uses Eqs (2.64)
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to (2.83).

The subroutine has four nested DO LOOPS. It cycles through

p, q, m, and n and generates the Galerkin equations according to

the Cases of integration outlined in Chapter II. At each step

in the iteration process, the equations are assembled into

matrix format as shown:

o mn

w - stiffness matrix C =

mnm
W X mn

B
2 -mn(W or N1 ) mass/inertia matrix 'Cmn

mn

JL Gmn.

(3.1)

The stiffness matrix is the assemblage of the left hand sides of

the Galerkin equations, and the mass/inertia matrix is the

assemblage of the right hand sides. Both matrices have (5-M-N)

rows and (5"M"N) columns. Every value of p and q generates a

new row for each of the 5 degrees of freedom, and every value of

m and n generates a new column. w2 or N1 is the eigenvalue;

depending upon the integer flag input by the user ("1" for

vibration problem, or "2" for buckling problem), the

mass/inertia matrix will contain terms associated with either w2
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or N The vector:
1IM

BEn

.C
mnE

is the associated eigenvector. The stiffness and mass/inertia

matrices are then input to the IMSL subroutine DGVCRG which

calculates the eigenvalues and eigenvectors.

The subroutine then determines the fundamental mode shape

along the midlines of the laminate. First it substitutes the

C coefficients from the eigenvector into the deflection

equation, which for both boundary condition considered is:

w(x,y) = n C nsin(mnx/a)sin(nny/b) (3.2)

The circumferential mode shape is determined by calculating

values of w(a/2,y), and the longitudinal mode shape is

determined from w(x,b/2):

w(a/2,Y) = M 1 IC mnsin(mn/2)sin(nny/b)

(3.3)

w(x,b/2) = M1 sin(x/)sin(n/2)

The eigenvalues and mode shape data points are then printed.

(Appendix E contains an example for M=N=2 that shows how the

Galerkin equations are generated to form the stiffness and

mass/inertia matrices.)
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ANALYSIS PERFORMED

Several analytical studies were performed to demonstrate

the results of this thesis. First, the convergence

characteristics of the Galerkin method were demonstrated. Then,

a case comparison study with Donnell cylindrical shell panel

solutions was performed. The effects of transverse shear

deformation, radius of curvature variation, and rotary inertia

were investigated. Finally, the influence of varying the length

to span ratio was studied.

Laminated Circular Cylindrical Shell Pae Properties

The cylindrical shell panel studied in this thesis is

constructed of graphite-epoxy material and has the following

material properties:

E = 2.10 E+07 psi

E2 = 1.40 E+06 psi

G12 = 6.00 E+05 psi

212 = 0.3

p = 1.42454 E-04 slugs/in
3  (0.055 lbm/in )

Two ply layups were investigated: C 0o/90 5o s and

C+45 5/-4550J s (both of which for convenience will be referred

to as (0/90]s and [±45] s). The latter ply layup will introduce

more shear stiffness terms into the formulation. Tables 3.1 and
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3.2 contain the stiffness terms calculated from subroutine

"LAMINAT". These stiffness terms will be used in all analysis

throughout this chapter, except for the Donnell comparison

study.

Table 3.1 Panel Stiffness Elements (h = 1.0 in.,[0/90]s )

Extensional Stiffness Elements

A11 = 11267605.634 A12 = 422535.211 A22 = 11267605.634

A1 6 = 0.0 A2 6 = 0.0 A6 6 = 600000.-0

A44 = 540000.00 A45 = 0.0 A5 5 = 540000.0

Bending Stiffness Elements

D = 1555164.319 D12 = 35211.268 D22 = 322769.953

D16 = 0.0 D26 = 0.0 D6 6 = 50000.0

D44 = 41250.0 D4 5 = 0.0 D55 = 48750.0

Higher Order Stiffness Elements

F11 = 256382.042 F12 = 5281.690 F22 = 25308.099

F16 = 0.0 F2 6 = 0.0 F6 6 = 7500.0

F 44 = 6046.875 F45 = 0.0 F55 = 7453.125

H11 = 46814.088 H12 = 943.159 H22 = 3487.723

H16 = 0.0 H26 = 0.0 H66 = 1339.286

11 = 9152.886 12 = 183.392 J22 = 628.022

116 = 0.0 126 = 0.0 J66 = 260.417

3.Units: A.. are lb/in, Dij are lb-in, F.. are lb .in,

H.. are lb 5 in, and J.. are lb 7 -in
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Table 3.2 Panel Stiffness Elements (h = 1.0 in, [± 45)

Extensional Stiffness Elements

A11 = 6445070.423 A12 = 5245070.423 A22 = 6445070.423

A16 = 0.0 A2 6 = 0.0 A6 6 = 5422535.211

A4 4 = 540000.00 A4 5 = 0.0 A5 5 = 540000.0

Bending Stiffness Elements

D11 = 537089.202 D12 = 437089.202 D22 = 537089.202

D16 = 308098.592 D26 = 308098.592 D66 = 451877.934

D44 = 45000.0 D4 5 = -3750.000 D5 5 = 45000.0

Higher Order Stiffness Elements

F1 1 = 80563.380 F12 = 65563.380 F22 = 80563.380

F16 = 57768.486 F26 = 57768.486 F66 = 67781.690

F44 = 6750.0 F45 = -703.125 F55 = 6750.0

H = 14386.318 H12 = 11707.746 H2 2 = 14386.318

H16 = 10831.591 H2 6 = 10831.591 H6 6 = 12103.873

J = 2797.340 J12 = 2276.506 J2 2 = 2797.340

J16 = 2131.216 J26 = 2131.216 J66 = 2353.531

Units: A.. are lb/in, D.ii are lb'in, F.. are lb3-in,

H.. are lb5 .in, and J.i. are lb7 in
861
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rkin Method Convergence.

As Bowlus (3) points out in his thesis, one needs to

determine if the Galerkin technique converges to an exact

answer. This section does not attempt to prove the convergence

of the Galerkin technique. Instead, it shows, as did (24), the

necessary (but not sufficient) condition that the frequencies

and buckling loads drop by smaller and smaller amounts,

approaching exact values asymptotically, as the values of M and

N are increased. Referring to Eq (2.49), if M=N=2 then each

admissible function is approximated by 4 terms; if M=N=10,

there are 100 terms, and so on. M=N=1O was set as the maximum

convergence limit due to computer memory limitations and lengthy

CPU run times.

Table 3.3 displays the Galerkin convergence characteristics

of the natural frequency for several arbitrary panel

configurations. Table 3.4 shows the convergence for the

critical buckling loads. Finally, Figures 3.1 and 3.2 show

plots of the frequency and buckling convergence tendencies for

h/R=1/5 and b/h=20.O for [±45] laminates. All data indicates

the natural frequencies tend to converge faster than the

buckling loads. In other words, vibration problems need lower

values of M and N than buckling problems to achieve converged

solutions.

The difference in buckling load and natural frequency

convergence tendencies is explained by the mode shape of the
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deformed panel. In general, for both the frequency and buckling

problems, the longitudinal mode shape behaves like that of a

flat plate: usually one full sine wave or one half sine wave.

Table 3.3 Galerkin Convergence

Fundamental Frequency (rad/sec)

b = 10.0 in b = 15.0 in b = 20.0 in

M = N W Decrease W Decrease W Decrease

2 30840.4 20320.5 15647.9

4 27738.5 10.1% 16546.3 18.6% 11866.7 24.2%

6 27608.4 0.47% 16383.5 0.99% 11711.7 1.31%

8 27598.1 0.04% 16342.7 0.25% 11665.7 0.39%

Clamped Boundary Condition

(±45]s , R = 5.0 in, h = 1.0 in, a/b=1

w(xb/2) in Eq (3.3) takes on this shape as x varies from 0 to a.

The circumferential mode shape, w(a/2,y), behaves

differently for the two problems. For vibration, there is

generally 1.0 to 1.5 full sine waves in the circumferential

direction from y = 0 to y = b. Interestingly, the mode shape is

independent of the degree of accuracy chosen: M=N=2 generally

produces the same shape as M:N=10.

On the other hand, the buckling mode shape depends a great

deal upon the degree of accuracy. The general trends can be

explained by an example. Refer to table 3.4, clamped boundary
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condition, R = 5 in, b = 20 in. M=N=2 generates N1=1388936.8

lb/in. The circumferential mode shape is a single half sine

wave. For M=N=10, N1=309620.0 lb/in (4.5 times lower), and

there are six full sine waves in the circumferential direction.

Table 3.4 Galerkin Convergence

Critical Bucklin Load (lb/in)

b 10.O in b 30.0 in

M N N Decrease N Decrease

2 542522.3 800558.9 -

4 380559.9 29.9% 603021.4 24.7%

6 360626.9 5.2% 382408.0 36.6%

8 359194.1 0.4% 329291.8 13.9%

10 358660.4 0.1% 305460.9 7.2%

Simply supported boundary condition

(±45] s h=1.0 in,a/b=l,R=5.0 in

b 20.0 in b 30.0 in

M = N N Decrease N Decrease

2 1388936.8 ------ 1720640.7 -

4 488639.3 64.8% 764410.9 55.6%

6 347096.8 29.0% 449037.7 41.3%

8 311436.4 10.3% 340343.2 24.2%

10 309620.0 0.6% 304491.6 10.5%

Clamped boundary condition
E±45) ,h=1.0 in, a/b = 1, R=5.0 in
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Bushnell (6) found this same type of mode shape behavior for

axially compressed cylindrical shells. It is clear that more

terms are needed to accurately model the buckling mode shape,

which explains the slower convergence tendencies for certain

geometries.

All panel configurations used in this thesis displayed

excellent frequency and buckling load convergence towards exact

answers. This data does not prove convergence, but it

definitely demonstrates convergence tendencies. The drawback

with the Galerkin technique is that in order to obtain extremely

accurate answers that require M and N be greater than 10, a

great deal of computer resources is required. This higher

accuracy requirement has more application with the buckling

loads, since they don't converge as fast as the natural

frequencies.

Comparison Study With Donnell Solution,

Reddy and Liu (16) examined laminated circular cylindrical

shell panels using Donnell theory with parabolic transverse

shear modeling. The equations of motion for the circular

cylindrical shell panel, Eq (2.33), will degenerate down to the

Donnell equations of motion by dropping the appropriate higher

order terms in Eq (2.33a) as previously discussed in Chapter II.

Reddy found an exact solution to the equations of motion for
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simply supported boundary conditions using Navier's method. The

Navier solution exists only if the following stiffnesses are

equal to zero: Ai6 = Di6 = Fi6 = Hi6 = 0 (i = 1,2) and A4 5 =

D45 = F45 = 0. This restricts his analysis to panels with

(0/90] 8ply layups.

Reddy used different engineering constants in his work than

those used in this thesis. The following values were used in

the comparison:

E1 = 2.1 E+07 psi

E2 = 8.4 E+05 psi

G12 = 4.2 E+05 psi

G 13 G 12

G23 = 1.68 E+05 psi

'l2 0.2 5

p = 1.0 slugs/in 3  (Note an extremely large value)

These numbers give the 1.0 in. thick cylindrical shell panel the

stiffness terms shown in Table 3.5. Table 3.6 compares Reddy's

answers using the Navier solution with those of this thesis

using the Galerkin technique. Note that Donnell theory limits

the maximum h/R ratio to be about 1/50, as discussed in Chapter

II.
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Table 3.5 Stiffness Elements for the Reddy Comparison
(h = 1.0 in, [0/90]s )

Extensional Stiffness Elements

A11 = 10947368.421 A12 = 210526.316 A 22 = 10947368.421

A16 = 0.0 A26 = 0.0 A 66 = 420000.0

A44 = 294000.00 A45 = 0.0 A55 = 294000.0

Bendin g Stiffness Elements

D = 1543859.649 D12 = 17543.860 D2 2 = 280701.754

D16 = 0.0 D26 = 0.0 D66 = 35000.0

D44 = 16625.0 D45 = 0.0 D55 = 32375.0

Higher Order Stiffness Elements
F11 = 255263.158 F12 = 2631.579 F22 = 18421.053

F16 = 0.0 F2 6 = 0.0 F6 6 = 5250.0

F44 = 2198.438 F4 5 = 0.0 F5 5 = 5151.563

H11 = 46640.038 H12 = 469.925 H22 = 2232.143

H16 = 0.0 H26 = 0.0 H6 6 = 937.50

J = 9120. 294 J12 = 91.374 J22 = 382.630

J16 = 0.0 J26 = 0.0 J66 = 182.292

Units: A.. are lb/in, Di. are ib-in, Fi are lb3"in,

H are lb5"in, and J i. are lb7 'in

131
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Table 3.6 Donnell Frequency Comparison

Fundamental Frequency (rad/sec)

a = b = 100.0 in.
h

R (in) h Navier Galerkin Error (M)

500.0 .002 1.86602 1.8697 + .2

1000.0 .001 1.52416 1.52458 + .03

2000.0 .0005 1.42519 1.42529 + .007

5000.0 .0002 1.39585 1.39623 + .03

a = b = 10.0 in.

R (in) Navier Galerkin Error (%)

50.0 .02 108.4237 108.6415 + .2

100.0 .01 108.0571 108.109 + .05

200.0 .005 107.9655 107.9753 + .009

500.0 .002 107.9655 107.9379 - .03

Simply Supported Boundary Condition

(0/90] S P h = 1.0 in.

Table 3.6 validates the accuracy of the higher order theory as

it applies to Donnell type problems. The excellent agreement

between the higher order theory and the Donnell equations is

attributed to the h/R region involved. As explained earlier,

since the maximum h/R value is 1/50, the higher order terms in

Eq (2.33a) approach zero; the higher order equations of motion

reduce to Reddy's Donnell equations. Table 3.6 also shows the

Galerkin technique to be an excellent approximation method.
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Transverse Shear Dformtion Analysi

This section will compare the parabolic transverse shear

model used in this thesis with the Mindlin transverse shear

model and the classical Kirchhoff model, which doesn't

incorporate transverse shear. This section is devoted to flat

plate comparisons, R * c.

Classical plate theory with no modeling of transverse shear

makes the plate too stiff; consequently, the theory

overpredicts the natural frequencies and buckling loads.

Therefore, plates modeled with transverse shear will have lower

frequencies and buckling loads than Classical plates.

Furthermore, the more accurate parabolic transverse shear model

should have lower frequencies and buckling loads than the

Mindlin model. These statements are verified by comparing the

parabolic solutions with Bowlus' (3),(4) and Palardy's (13)

Mindlin solutions and Jones' (9) Classical solutions. Bowlus

used the Galerkin method, and Palardy used the Levy method to

arrive at their flat plate answers. Jones has closed form

solutions for the buckling loads and natural frequencies of

simply supported specially orthotropic laminated plates using

Classical thin plate theory, ie, the Kirchhoff assumptions. The

fundamental frequency for a classical thin plate with a ply

layup of (0/90)] is:
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n02  [Dl/a4 + 2(D + 2D6)a 26 2) + (3.4)

If the aspect ratio, a/b, is greater than 2.5, the critical

buckling load for this laminate is:

1 2 [D2 2D66 +(D D22'J (3.5)

The bending stiffness terms in these two equations are obtained

from Table 3.1.

Table 3.7 compares the natural frequencies of the parabolic

and Mindlin transverse shear models with the Classical model

using Eq (3.4). Table 3.8 compares the parabolic buckling loads

with the classical buckling loads using Eq (3.5). Both tables

display the expected results, but with one exception;

Table 3.7 Classical Frequency Comparison

Fundamental Frequency (rad/sec)

a (in) Parabolic Mindlin Classical Classical Error

5.0 32459.7 33210.67 48481.45 + 49.3 %

10.0 10519.85 10657.15 12120.36 + 15.2 %

20.0 2910.64 2913.32 3030.09 + 4.1 X

30.0 1322.20 1322.56 1346.71 + 1.9 X

40.0 749.66 749.47 757.52 + 1.0 X

50.0 481.57 483.29 484.81 + 0.7 X

Simply Supported Boundary Condition

R =, (0/90] s , h = 1.0 in, a/b = 1
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Table 3.8 Classical Buckling Comparison

Critical Buckling Load (lb/in)

b (in) Parabolic Classical Error

5.0 432811.14 666161.06 + 53.9 %

10.0 146354.07 166540.27 + 13.8 %

20.0 40243.73 41635.07 + 3.5 %

30.0 18226.55 18504.47 + 1.5 %

40.0 10321.34 10408.77 + 0.8 %

50.0 6626.29 6661.61 + 0.5 %

Simply Supported Boundary Condition

R . w , [0/901 s h = 1.0 in, a/b = 3

Ironically, there is almost a perfect match between the

frequencies for the parabolic and Mindlin cases. This is

probably because the simply supported boundary condition is so

"ideal". There are very good convergence characteristics; in

fact, for the [0/90)s ply layup, the convergence is immediateS|
for M = N = 2. For both the frequency and buckling cases, the

transverse shear models approach the classical solutions

asymptotically at a/h (or b/h) values of 40.0 to 50.0. See

Figures 3.3 and 3.4.
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Tables 3.9 and 3.10 compare parabolic transverse shear

frequency solutions with those of Mindlin theory for [±45] s

laminates. Table 3.9, the simply supported case, shows the same

trend as before; parabolic and Mindlin solutions are virtually

equal.

Table 3.9 Parabolic vs Mindlin Shear Models
Simply Supported Boundary Condition

Fundamental Frequency (rad/sec)

M = N Parabolic Mindlin Error (M)

2 3656.39 3643.01 - .37

4 3596.80 3573.37 - .65

6 3571.40 3539.91 - .88

8 3557.18 3520.58 - 1.03

R + a, [± 45] , h = 1.0 in, a=b=20.0 in

The expected departure of the Mindlin theory from the parabolic

theory is evident for the clamped boundary condition in Table

3.10. For each value of M and N, the parabolic model produces

more accurate frequencies.
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Table 3.10 Parabolic vs Mindlin Shear Models
Clamped Boundary Condition

Fundamental Frequency (rad/sec)

[0/901

M = N Parabolic Mindlin Error (M)

2 6609.30 7869.20 + 19.0

6 5349.30 5698.35 + 6.5

8 5333.73 5644.82 + 5.8

[± 45]

M = N Parabolic Mindlin Error (M)

2 6537.40 7705.62 + 17.9

6 5098.60 5542.46 + 8.7

8 5058.90 5231.92 + 3.4

R + c, h 1.0 in, a = b 20.0

Radius 2f Curaue Anasa

In this section the effects of varying the radius of

curvature, R, (or, equivalently, h/R) is examined. As noted in

Chapter II, for a flat plate h/R = 0, and membrane completely

decouples from bending. The membrane Galerkin equations, those
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associated with u0 and vo , are coupled together, but as a whole

are decoupled from the bending Galerkin equations: those

associated with w, w., and w As h/R is increased from 0

up to the maximum value of 1/5, membrane and bending couple

together, the cylindrical panel becomes deeper and stiffer, and

the natural frequencies and buckling loads increase. The

following specific h/R ratios are investigated:

0: Flat Plate

h 1/50: Donnell Equation Maximum Limit

R 1/20: Intermediate Value

1/5: Maximum Limit of Higher Order Theory

The figures in this section are plots of w or NI vs. b/h.

The panels are square, a/b = 1, and M = N = 6 is used as the

degree of accuracy. (The two buckling load plots for h/R = 1/5

required M = N = 8 for b/h values of 5, 10, and 15 and M=N=1O

for b/h values of 20 and 30 to obtain proper convergence.) The

circumferential length to thickness ratio (b/h) is varied from

5.0 to 50.0.

The four fundamental frequency plots are shown in Figures

3.5 through 3.8. All curves follow the same basic trends: the

frequencies are high 'at b/h = 5.0 and then decrease as the panel

gets thinner, approaching constant values asymptotically at b/h

values of 40 to 50. Also, as expected, the frequencies increase

due to membrane and bending coupling as h/R is increased from 0

to 1/5. The effect of this coupling is shown in Table 3.11 in

which panel to flat plate frequency comparisons are made.
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Table 3.11 Frequency Coupling Effects

p|

[0/90] s  [±451

h/R b/h = 10 b/h = 30 b/h = 10 b/h =30

1/5 1.54 4.52 2.02 4.37

1/20 1.04 2.65 1.14 2.48

Simply Supported Boundary Conditions

[0/90]s  [±45] s

h/R b/h = 10 b/h = 30 b/h = 10 b/h = 30

1/5 1.27 2.67 1.78 3.37

1/20 1.02 1.54 1.10 2.05

Clamped Boundary Conditions

= flat plate natural frequencyp

h = 1.0 in, a/b = 1

With few exceptions, the [±45] laminates generally yield

higher frequencies than the [0/90] laminates for both boundary

conditions considered. The [±45]s laminates have inplane shear

stiffness terms (D16 , D26, F16 , F26, H16, H26 , J16' J26) that

account for these higher frequencies. (See Table 3.1 and 3.2.)

Referring to Figures 3.5 and 3.6, for the simply supported

boundary condition, the difference in frequency for the two

laminates gets greater as the curvature increases. For h/R = 0,

the frequencies are about 20% higher for the [±45] s laminate for
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all b/h values. For h/R = 1/50, the frequencies are about 20%

higher at b/h = 5 and are about 50% higher at b/h = 50. For h/R

= 1/20, the frequencies vary from 20% higher to 80% higher, and

for h/R = 1/5 the frequencies are about 25% higher for all b/h

values.

For the clamped boundary condition, the [0/90] s  laminate

yields higher frequencies than the [±45] s  laminate for flat

plates (h/R=O). But, as the curvature increases, the

frequencies of the [±45] s laminate become greater than those of

the [0/90]s laminate. (See Figures 3.7 and 3.8.) For h/R=1/50,

the frequencies for both laminates are roughly equal at b/h=5,

but the frequencies are about 30% higher for the [±45] s laminate

at b/h=50. For h/R = 1/20 the frequencies vary from roughly 6%

higher to 20% higher, and for h/R = 1/5 the frequencies are

roughly 30% higher.

Table 3.11 displays a consistent trend mentioned in the

previous two paragraphs; in general, as the curvature of the

panel increases, the membrane and bending coupling has a greater

effect at larger b/h values. Larger b/h values physically

equate to greater arclength around the panel. In fact, for h/R

= 1/5 at b/h = 30 the cylindrical panel is almost a complete

cylinder.

For the same ply layup, the frequencies for the clamped

boundary condition are higher than those for the simply

supported boundary condition. For the [0/90] laminate the

difference is quite dramatic. For h/R values of 0 and 1/50, the
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frequencies are 20% higher at b/h = 5 and over 100% higher at

b/h =40 to 50. For h/R = 1/20 the frequencies are roughly 30%

higher for all b/h values, and for h/R = 1/5 the frequencies are

roughly 20% higher. Figures 3.6 and 3.8 show the same trend for

the [±45] s laminate, but the increases in frequency for the

clamped boundary condition over the simply supported boundary

condition are not quite as large as they were for the [0/90]

Figures 3.9 and 3.10 show the two buckling plots done for

the [±45]s laminate. The same trends of the frequency plots are

evident; high buckling loads at small b/h values, decreasing

asymptotically to constant loads at b/h values of 40 to 50.

There are very significant increases in the buckling loads as

h/R is increased, and as Table 3.12 shows, the membrane and

bending coupling has a greater effect as the circumferential

distance around the panel increases.

The [±45) s laminate yields higher buckling loads for the

clamped boundary condition than for the simply supported

boundary condition for h/R values of 0, 1/50, and 1/20. The

buckling loads are roughly the same for both boundary conditions

for h/R = 1/5. Similarly, as Table 3.13 indicates, the (0/90)s

laminate yields buckling loads for the clamped boundary

condition that are upwards of 50% higher than the buckling loads

for the simply supported boundary condition.
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Table 3.12 Buckling Load Coupling Effects

Simply Supported Clamped

h/R b/h = 10 b/h = 30 b/h =10 b/h =30

1/5 1.63 9.35 1.43 5.61

1/20 1.08 3.45 1.06 2.22

N = flat plate buckling load
p

h = 1.0 in, a/b = 1, [±45)

SS

Table 3.13 Buckling Loads for (0/903]s Laminates

Critical Buckling Load (lb/in)

b/h Simply Supported Clamped

5 392281.3 454819.2

20 104118.3 195617.0

50 94020.0 134723.6

R 20.0 in, h = 1.0 in, a/b = 1
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Rotary Inerti Analsis.

Another feature of this thesis is the incorporation of

rotary inertia into the vibration problem. Referring to Eqs

(2.32) and (2.33), the following accelerations contribute to the

rotary inertia: W, x W W yy x WXX w y'

yY y.If rotary inertia is eliminated, the only inertia term

left is I w on the right hand side of the equation of motion for

w in Eq (2.33). Likewise, the Galerkin equations all reduce to

a single term on the right hand sides. The end result is a much

less populated mass/inertia matrix in Eq (3.1).

Bowlus (4) and Palardy (13) both found Rotary inertia to be

negligible for the vibration of flat plates modeled with Mindlin

transverse shear theory. The results are the same for this

thesis. Several cases were run for both simply supported and

clamped boundary conditions, which included various h/R ratios,

ranging from 0 (flat plate) to 1/5, and various a/h (b/h)

ratios. The results were all the same. With rotary inertia

removed, the fundamental frequencies are only about 0.5% higher.

The overall conclusion is rotary inertia has a negligible effect

for first mode analysis. It does become more important for the

higher modes, however.
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I Jnnsxi Normal Stress Considerations.

The transverse normal stress, a was set equal to zero

under the assumptions of plain stress constitutive relations.

As explained in Chapter II, this is a good assumption for most

geometries, and is therefore used quite extensively in

plate/panel analyses. Some of the geometries analyzed in the

previous sections "stretch" the accuracy limitations of the

assumption and warrant specific comments. First, the flat plate

is examined.

For flat plates, the validity of assuming a = 0 is

dependant upon the minimum value of a/h (or b/h) chosen. Koiter

(10) states that the transverse normal stress is in general of

order h 2/L2 times the bending stress, and transverse shear

strain is h/L times the bending stress, where L is the smallest

wavelength of the deformation pattern on the mid surface. For

plates, L is almost always equal to the smallest dimension (a

or b). Therefore, for the plate:

a h2 /a 2 (Pay 
(3.6)

TxzT yz h/a (a y) ...

A rule of thumb in classical plate theories is the minimum a/h

ratio is 10, or a z : O.01(ax, y). References (15). (17), (3),

and this author used lower values. Referring to the previous
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sections, the minimum a/h (b/h) ratio used is 5; az is roughly

4% of (axCy) and 20% of (T ,'T y), and therefore becomes

important for these very thick plate configurations.

Shells incorporate the a approximations with respect to

the flat plate, plus an additional accuracy consideration. As

Koiter (10) states, the transverse normal stress is of order h/R

times the bending stress. For the shell panel:

a , :: h R ( x ' a y (3 .7 )

T XZ' Tyz -zhL(a X s

When combined together, these equations give:
azL/R (T x TY) (3.8)

By the mere fact the maximum h/R ratio used in this thesis is

1/5, o becomes important because it is in reality roughly 20%

of the bending stresses. For the smaller h/R ratios used, the

effect is negligible, except for the regions of small a/h as

explained above.

Using Eq (3.8), a may be further examined for the h/R

ratio of 1/5. L is not always equal to the dimension of the

shell panel; it varies with b/h, and is determined from the

mode shape in Eq (3.3). As discussed before, the longitudinal

mode shape generally behaves like that of a flat plate: usually

one full sine wave or one half sine wave. The circumferential

mode shape varies, depending on the geometry and on the problem

(buckling or vibration).

The panel generally buckles into six sine waves in the
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circumferential direction; L I/6b and L/R1/30b for h/R=1/5.

From Eq (3.8), z is roughly 15% of (Txz, yz) at b/h = 5, where

the transverse shear is very prominent. a t ( at b/h =

30, but the transverse shear here is very low; so, the effect

is negligible.

For the vibration problem involving h/R = 1/5, there is in

general only 1 to 1.5 full sine waves in the circumferential

direction; L/R 2/15b. a becomes important at b/h=5 because it

is roughly 66% of the transverse shear in a region where the

shear is very prominent.

The overall conclusion of this section is a is important

for h/R values of 1/5 and a/h (b/h) values of 5, especially for

the vibration problem. The overall trends displayed by the

data, however, are accurate. Figures 3.3 through 3.10 display

logical and consistent trends for these configurations.

Whitney (24) presents a method that includes a effects andz

would improve the accuracy for these particular geometries. In

his model, the transverse displacement w is a linear function of

z and has the form: w(x,yz) = w (x,y) + zO(x,y), where w o(X,y)

is the mid surface transverse displacement, and O(x,y) is an

additional degree of freedom that must be included in the

constitutive relations and equations and motion. This

application would be an interesting follow-on to this thesis.
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IV. CONCLUSIONS

A theory applicable to symmetrically laminated anisotropic

circular cylindrical shell panels of arbitrary geometries has

been developed. The theory includes a through the thickness

parabolic transverse shear stress and strain distribution and is

valid for 0 5 h/R 5 1/5. Analytical solutions for the

fundamental frequencies, critical buckling loads, and the

corresponding mode shapes are obtained using the Galerkin

technique. Simply supported and clamped boundary conditions

were investigated. Based upon the analysis, the following

conclusions are presented:

The strain displacement relations are very accurate for

05-h/R1/1O. The results were verified against the Donnell

solutions for 01-h/Rt1/50. Since there is no z/R variation in

the transverse shear strains, and since a and c are assumed

equal to zero, some precision is lost for h/R values of 1/5.

However, the generated results show very logical and consistent

trends at this h/R limit, and consequently the theory here is

assumed to be a very good approximation.

The Galerkin technique proved to be an excellent method for

solving the five coupled partial differential equations of

motion and boundary conditions. The method converged to exact

frequencies very quickly for all geometries. Convergence was

slower for the buckling problem, particularly for the clamped
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boundary condition at h/R 1/5 and high b/h ratios. The method

still works for these cases, but at the cost of a great deal of

computer time. Another benefit of the Galerkin technique is

that it may be applied to any desired ply layup and more types

of boundary conditions.

Parabolic transverse shear effects were measured up against

classical solutions for simply supported flat plates with

symmetric cross ply laminates. At a/h = 5 the frequency

obtained using transverse shear was 49% lower than the classical

frequency. At a/h = 40 the difference was only 1%. For aspect

ratios of 3 (a/b = 3), the parabolic shear buckling load was 54%

lower than the classical buckling load at b/h = 5 and 0.8% lower

at b/h = 50.

There is little difference between the parabolic transverse

shear model and the Reissner-Mindlin model for simply supported

flat plates. The parabolic model is more accurate than the

latter for clamped plates; Mindlin theory overpredicts the

frequencies by 15-20% for M=N=2 and by 3-5% for M=N=8. The

margin of error decreases as the number of terms for each degree

of freedom increases.

Transverse shear effects consistently became negligible as

a/h (b/h) approached 40 to 50 for all plate and panel

configurations.

Increasing h/R from 0 to 1/5 increased membrane and bending

coupling , and drove the frequencies and buckling loads to

higher values for both boundary conditions. For both boundary
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conditions, the [±45] s laminates yielded higher frequencies than

the (0/90]s  laminates, due to the additional inplane and

transverse shear terms in the former. Both [±45] s and (0/90]s

laminates yielded higher frequencies for clamped boundary

conditions than for simply supported boundary conditions.

Buckling loads behaved differently. The [±45] s  laminates
S

yielded higher buckling loads than the 10/903S laminate for

simply supported boundary conditions, but [0/90] s buckling loads

are higher than [±45] s buckling loads for clamped boundary

conditions. The [±45] s laminates have slightly higher buckling

loads for clamped vs simply supported boundary conditions,

except at h/R = 1/5 where the buckling loads for both boundary

conditions are roughly equal. Finally, [0/90] laminates have

much higher buckling loads for clamped boundary conditions than

simply supported boundary conditions.

Rotary inertia effects were negligible for all panel

configurations examined. Fundamental frequencies were only

about 0.5% higher with rotary inertia removed.
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Appendix A: rns s Shear nd Maximum

hLR Asmtions

This appendix explains in detail the assumptions made about

the transverse shear strains, ryz and rxz' discussed in Chapter

II. By examining the work of Dennis (8), a measure of the error

introduced by assuming no z/R variation with respect to the

shear model is developed. The appendix focuses on ry z , but it

should be understood that similar conclusions for r xz apply.

This thesis assumes z/R :t 0 for the transverse shear

strains. It was shown from Eq (2.2) this resulted in

v , (A.1) -
yz W'y R z

Substituting the displacement relations in Eq (2.1) into Eq

(A.1) gives:
v2 3 v-

W, z z + -- 22
yz y + + R R R 2 R

Wy+ 2zO 2 + 3z202 (A.2)

Since z/R - 0, Eq (A.2) reduces to:

Syz= Wy + Wy + 2zO2 + 3z2e2 (A.3)

Evaluating Eq (A.3) at z = ±h/2 and setting the two equations

equal to zero to satisfy the boundary conditions gives:
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W, +wy + hO 2 +3/4h2e2 = 0

+ W,y - hO 2 + 3/4h 2e 2 = 0

from which the following results:

02 = 0

e 2 = - 4/3h2 (y + w,y

By performing similar operations with rxz' similar expressions

are obtained for 1and e. By substituting 02' e2' i, and e1

into Eq (2.1), the displacement field in Eq (2.3) is obtained.

Of course, the approximation z/R - 0 for the transverse shear

limits the maximum value of h/R for which the strain

displacement relations in Eq (2.2) are valid. By examining

reference (8), an accurate value for this maximum h/R limit may

be obtained.

Dennis assumed a 4th order displacement field rather than a

3rd order field. For the circular cylindrical shell panel, this

field is:

=u + zW x + z201 + J r1 + z491

V = I + o + y + z2 + z3Y + z4e
R )o zwy + Z 2  Y 2 + 2

w=w (A.4)

Inserting these relations into Eq (2.2) without making the

assumption z/R % 0 gives an exact expression for r,,:

=-1 223Z z3 3 3 1rz +z W + (2z - RZ)2+ (3z 1 Y2 + (4z -R jJ 2
R

+ w, (A. 5)
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Following the similar procedure, Eq (A.5) is evaluated at z =

±h/2 and set equal to zero. Adding the two resulting equations

gives:

h3

2h' 2 - -- R 2  2

from which:

462 =0

2 2R--- 2

Inserting these values into Eq (A.5) and again evaluating at z =

±h/2 gives:

y = 0 W, + W + 1 h 2  (A.6)
1 ± - 4 8R 2

2R

from which:

( 2  =-4 (w, -wy) 
(A. 7)

8_ 2) 2 3h 2  Y

If h/R = 1/5, the underlined term in Eq (A.7) = 0.005;

therefore,

2 W3h2  Y y R 5

Inserting the values of 02' e2 ' and r2 into Eq (A.4), Dennis

obtains exactly the same displacement field as in Eq (2.3). In

conclusion, Dennis' transverse shear model is accurate up to h/R

1/5 using the relation:

1- W,
= 1+ z y R z] +v,,

R

S[ w, + v, (A. 8)
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What is the h/R limit for ry, used in this thesis, that is Eq

(A.1) ? Manipulating Eq (A.8) gives:

Yv .4 , - [w, v]
y= W + Vz - - Wy R

or
2 yz = yz w (A .9 )

where

r yz = the exact value of ry z in Eq (A.8)

yzl = the approximate value of r yZ in Eq (A.1)

and

z [~y - = the error

Substituting the displacement field in Eq (2.3) into Eq (A.9)

gives:
+ 2 2 4 4z4

+yz R2 - h+ _ + w, .
2 R2 3hR2J R 3h2 2 J

For z = + h/2 and h/R = 1/5, the shear becomes:

0.11
YO + 0.0067w'y - 0.103w,

For a 1.0 in thick laminate and a radius of curvature of 5.0 in,

the final result is:

= Y + 0.022vo + 0.0067wy - 0.103w,

This is a small error, especially since this thesis is concerned

with small deflection theory with rotations of around 5.0 -I

Therefore, using an h/R limit of 1/5 is a good approximation for

the transverse shear expression in Eq (A.1).
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Appendix B: Integration By Parts

This appendix briefly summarizes the approach taken for the

integration by parts during the development of the kinetic,

strain, and potential energies. This development parallels that

presented by Shames and Dym (20).

For two functions, G(xy) and H(x,y), the following scheme

applies for the integration by parts of double integrals:

I f GH, xdXdy = jdy - HG, xdXdy

0 0 x=O 0 0

= jb (G(a,y)H(ay) - G(O,y)H(O,y))dy jb JHG, xdXdy

0 0 0

(B. 1)

and

jb fa GHdxdy =IaG y=bA dx-fb f aHGdxdy
0 0 0 y=O 00

= Ja(x, b)H(x,b) - G(x,O)H(x,O) )dx -b fHGydXdy

0 0 0

(B.2)

The line integrals represent the boundary conditions along

the edges of the panel. Line integrals of the following form

may be reduced further to yield boundary conditions at the four

corners of the laminate:
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aGH xydx =J 8a(G(xb)H(x~b), - G(x 1 O)H(xO), )dx

y~b xa a b
=GH~ ,~x - JHG, xjy=b dx

G(a,b)H(a,b) - G(a,0)H(a,O) - G(0,b)H(0,b) +

G(0,0)H(O,O) -J((x~b)G(xib), - H(x)G(x) )dx

0

(B. 3)

anid

jb yX~a d= Jb(G( a,y)H(a,y),y - G(0Y)H(OY),Y) dy

= GH lHI:: I HGdy
= G(a,b)H(a,b) -G(a,O)H(a,0) - G(O,b)H(0,b) +

G(0,0)H(0,0) _JbIIH(a, y)G(a,y), - H(0,Y)G(0,Y),Y) dy

0

(B. 4)
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Appendix C: Integration Formulas used in

Generating Galerkin Equations

MACSYMA (25) was used to integrate the equations of motion

and boundary conditions to generate the Galerkin equations for

the simply supported and clamped boundary conditions. Intrinsic

in MACSYMA's artificial intelligence logic is the capability to

symbolically integrate trigonometric functions.

MACSYMA evaluated the following integrals, taken from (2),

to generate the Galerkin equations:

When mn = P

cos(mnx/a)cos(pnx/a)dx = a/2 (C.1)

0

Jsin(mnx/a)sin(ptx/a)dx = a/2 (C. 2)

0

sin(mnx/a)cos(pfx/a)dx 0
o
0
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When m 9 p:

a cos(mnx/a)cos(pnx/a)dx =0 (C.4)
00

5 sin(mnx/a)sin(p-x/a)dx = 0 (C.5)
0

fa sin(mffx/a)cos(pnx/a)dx

0
0 for (m+p) an even integer

n 2am for (m+p) an odd integern(m 2_ p 2)"

Similarly, for 
(C.6)

sin(pnx/a)cos(mnx/a)dx

0

0 for (m+p) an even integer

2 '2ap for (m+p) an odd integern(p 2_ m2 )
(C.7)

These same integrals apply for n and q, when the

independent variable is y, and the integration is from 0 to b.

1
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Appendix D: Computer Programs

This appendix contains the computer listings. Program

"MAINTHESIS", the complete code for simply supported boundary

conditions, is listed first. This is followed by the code used

for clamped boundary conditions.
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***** Simply Supported Boundary Condition ******

PROGRAM MAINTHESIS

C----------------------------------------------------------------
C CAPT PETE LINNEMANN
C
C GA-88D
C
C THE DETERMINATION OF THE FUNDAMENTAL NATURAL FREQUENCY AND
C CRITICAL BUCKLING LOAD OF AN ANISOTROPIC LAMINATED CIRCULAR
C CYLINDRICAL SHELL PANEL INCLUDING THE EFFECTS OF PARABOLIC
C TRANSVERSE SHEAR DEFORMATION AND ROTARY INERTIA.
C
C THESIS ADVISOR: DR ANTHONY FALAZATTO
C
C INITIAL PROGRAMMING DATE: 26 JUL 88
C
C------------------------------------------------------------------
C
C INITIALIZATION
C

DOUBLE PRECISION AB,R,H,PI,Al1.A12,A22,A6,A26,A66,A44,A45,
1A55, DlI, D12, D22, Di6, D26, D66, D44, D45, D55, FlI,Fl2, F22, Fl6, F26,
2F66, F44,F45,F55,HIi,Hi2,H22,H16,H26,H66,Jll, J12, J22,J16, J26,
3J66,TPLY,THETA(100),E1,E2,Gl2,V12,V21,GI3,G23,STIFF(500,500)
4,MASS(500,500),BETA(500),RHO,REVEC(100)

C
DOUBLE COMPLEX ALPHA(500),EVAL(500),EVEC(500,500)

C
C WORKSPACE ALLOCATION FOR IMSL
C

COMMON / WORKSP / RWKSP
REAL RWKSP(1503026)
CALL IWKIN(1503026)

C
OPEN (UNIT = 1, FILE = 'MAININ.', STATUS = 'OLD')
OPEN (UNIT = 2, FILE = 'MAINOUT.', STATUS = 'NEW')

C
C IS THIS A VIBRATION PROBLEM OR A BUCKLING PROBLEM ?
C NBUCVIB = 1; VIBRATION. NBUCVIB = 2; BUCKLING.
C

READ(1,5) NBUCVIB
C
C------------------------------------------------------------------
C
C READ SHELL PANEL DIMENSIONS AND LAMINATE DATA
C
C DIMENSIONAL DATA
C
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C LENGTH IN THE X DIRECTION (LONGITUDINAL AXIS)
READ(1,1) A

C LENGTH IN THE Y DIRECTION (CIRCUMFERENCIAL AXIS)
READ(l,l) B

C RADIUS OF CURVATURE
READ(l,1) R

C LAMINATE THICKNESS
READ(l,I) H
PI = 3.141592653589793

C LENGTH TO SPAN RATIO AND THICKNESS RATIO
AOVERB = A/B
HOVERR = H/R
AOVERH = A/H
BOVERH = B/H

C
C LAMINATE DATA
C
C NUMBER OF PLYS IN THE LAMINATE

READ(1,5) NPLYS
C THICKNESS OF EACH PLY IN THE LAMINATE

TPLY = H / NPLYS
C ORIENTATION ANGLE OF EACH PLY IN THE LAMINATE

DO 100 I = 1,NPLYS
READ(l,1) THETA(I)

100 CONTINUE
C MATERIAL PROPERTIES OF EACH PLY

READ(1,1) El
READ(l,1) E2
READ(l,1) G12
READ(1,1) V12
READ(1,3) RHO
V21 = V12 * E2 / El

C FOR THIS THESIS, G13 AND G23 WILL HAVE THE FOLLOWING VALUES:
G13 = G12
G23 = 0.8 * G12

C
C---------------------------------------------------------------
C
C WRITE SHELL PANEL DIMENSIONS AND LAMINATE DATA
C

WRITE(2, 10)
IF(NBUCVIB .EQ. 1) THEN
WRITE (2,11)
ELSE
WRITE (2,12)
ENDIF
WRITE(2, 13)
WRITE(2, 15)
WRITE(2,17) A,B,AOVERB
WRITE(2, 18) H,AOVERH,BOVERH
WRITE(2,20) R,HOVERR
WRITE(2, 22)
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WRITE(2, 23)
DO 101 I = 1, NPLYS
WRITE(2,24) THETA(I

101 CONTINUE
WRITE(2,25) NPLYS,H
WRITE(2,26) TPLY
WRITE(2,28) EI,E2
WRITE(2,30) G12
WRITE(2,32) G13,G23
WRITE(2,34) V12,V21
WRITE(2,35) RHO

C
C ---------------------------------------------------------------
C
C CALCULATE THE BENDING, EXTENSIONAL, AND HIGHER ORDER
C STIFFNESS ELEMENTS FOR A SYMMETRIC LAMINATE.
C

CALL LAMINAT(NPLYS,TPLY,THETAE1,E2)Gl2,V12,
lV21,Gl3,G23,PI,H,All,A12,A22,A1G,A26,A66,A44,A45,A55,
2D11,D12,D22,D16, D26,D66,D44,D45,D55, F1,F2,F22,F18,F26,F66,
3F44,F45,F55,Hll,Hl2,H22,H16,H26,H66,Jll,Jl2,J22,Jl6,J26,J66)

C
C ---------------------------------------------------------------
C
C WRITE LAMINATE STIFFNESS ELEMENTS
C

WRITE(2,36)
WRITE(2,40) A11,,A12,A22
WRITE(2,41) A16,A26,A66
WRITE(2,42) A44,A45,A55
WRITE(2, 43)
WRITE(2,44) D11,Dl2,D22
WRITE(2,45) D16,D26,D66
WRITE(2,46) D44,D45,D55
WRITE(2, 47)
WRITE(2, 48)
WRITE(2,49) F11,F12,F22
WRITE(2,50) F16,F26,F66
WRITE(2,51) F44,F45,F55
WRITE(2,52) H11,Hl2,H22
WRITE(2,53) H16,H26,H66
WRITE(2,54) J11,J12,J22
WRITE(2,55) J1S,J26,J66

C
C ---------------------------------------------------------------
C READ THE NUMBER OF TERMS IN THE ADMISSIBLE FUNCTIONS.
C DETERMINE THE DIMENSION OF THE MASS AND STIFFNESS MATRICES.
C

READ(1,5) MMAX
MSIZE = 5 * MMAX * MMAX
MSIZESQ = MMAX * MMAX
IF (NBUCVIB .EQ. 1) THEN
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WRITE(2,57)
WRITE(2,59) MMAX,MSIZE,MSIZE
WRITE(2,60)
ELSE
WRITE(2, 58)
RITE(2, 63)

WRITE(2, 64)
WRITE(2, 59) MMAX,MSIZE,MSIZE
ENDIF

C ---------------------------------------------------------------
C
C USING THE BENDING, EXTENSIONAL, AND HIGHER ORDER STIFFNESS
C ELEMENTS AND THE SHELL PANEL PHYSICAL CHARACTERISTICS AS
C INPUTS, CALCULATE THE STIFFNESS AND MASS MATRICES AND THEN
C FIND THE NATURAL FREQUENCIES AND/OR AXIAL BUCKLING LOAD AND
C THEIR RESPECTIVE MDE SHAPES.
C

CALL GALERK(PI,R,H,A,B,All,A12,A22,Al6,A26,A66,A44,A45,A55,
IDli, D12, D22, D16, D26, D66, D44, D45, D55, F11,F2, F22, F16, F26,F66,
2F44,F45,F55,H11,H12,H22,H16,H26,H66,Jl1,J12,J22,J16,J26,J66,
3NBUCVIB, MMAX, MSIZE, RHO, STIFF, MASS, BETA, ALPHA, EVAL, EVEC,
4MSIZESQ, REVEC)

C---------------------------------------------------------------
STOP

C
C------------------------------------------------------------------
C
C FORMAT STATEMENTS
C

1 FORMAT(F15.5)
3 FORMAT(D22.15)
4 FORMAT(E12.5)
5 FORMAT(15)
10 FORMAT(////,5X,'ANISOTROPIC LAMINATED CIRCULAR CYLINDRICAL S

*HELL PANEL')
11 FORMAT(//,5X,'VIBRATION PROBLEM')
12 FORMAT(l/,5X,'BUCKLING PROBLEM')
13 FORMAT(//,5X,'S2 SIMPLY SUPPORTED BOUNDARY CONDITIONS')
15 FORMAT(///,5X,'SHELL PANEL DIMENSIONS (in.)')
17 FORMAT(/,5X,'a = ',IX,F6.2,4X,'b = ',lX,F6.2,4X,'a/b = ',lX,
*F6.2)

18 FORMAT(/,5X,'h = ',IX,F4.2,4X,'a/h = ',lX,F6.2,4X,'b/h = ',l
*X,F6.2)

20 FORMAT(/,5X,'R = ',1X,E12.5,6X,'h/R = ',1X,F1O.8)
22 FORMAT(//,5X,'SHELL PANEL LAMINATE DIMENSIONAL AND MATERIAL

*DATA')
23 FORMAT(//,5X,'SYMMETRIC LAMINATE PLY LAYUP (DEGREES)')
24 FORMAT(/, 30X,F7.2)
25 FORMAT(/,3X, 13,2X, 'PLYS IN THIS',2X,F4.2,2X, 'in. THICK LAMIN

*ATE')
26 FORMAT(/,5X,'EACH PLY IS',1X,El2.5,2X,'ins. THICK')
28 FORMAT(/,5X,'ELASTICITY MODULII (psi): El = ',El2.5,2X,'E2
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*=',E12.5)
30 FORMAT(/,5X,'IN PLANE SHEAR MODULUS (psi): G12 =',E12.5)
32 FORMAT(/,5X,'TRANSVERSE SHEAR MODULII (psi): G13 = ',E12.5,

*2X,'G23 =',E12..5)
34 FORk4AT(/,5X,'POISSONS RATIOS: V12 = ',lX,F6.4,3X,'V21 = ',l
*X,F6.4)

35 FORMAT(/,5X,'MASS DENSITY (LB*SEC-2/IN^4): RHO = ',lX,Dl8.~1
*1)

36 FORMAT(///,5X,'EXTENSIONAL STIFFNESS ELEMENTS (lb/in)')
40 FORMAT(/,5X,'Al1 =',Fl5.3,3X,'A12 =',Fl5.3,3X,'A22 =',Fl5.3)
41 FORMAT(/,5X,'Al6 =',Fl5.3,3X,'A26 =',F15.3,3X,'A66 =',,F15.3)
42 FORMAT(/,5X,'A44 =',Fl5.3,3X,'A45 =',Fl5.3,3X,'A55 =',F15.3)
43 FORMAT(//J,5X,'BENDING STIFFNESS ELEMENTS (lb * in)')
44 FORMAT(/,5X,'D11 =',Fl5.3,3X,'Dl2 =',Fl5.3,3X,'D22 =',Fl5.3,)
45 FORMAT(/,5X,'D16 =',F15.3,3X,'D26 =',Fl5.3,3X,'D66 =',Fl5.3)
46 FORMAT(/,5X,'D44 =',F15.3,3X,'D45 =',F15.3,3X,'D55 =',Fl5.3)
47 FORMAT(//,5X,'HIGHER ORDER STIFFNESS ELEMENTS')
48 FORMAT(5X,'Fij (in * lb^3),Pi~j (in * lb-5),Jij (in * 1b'7)')
49 FORMAT(//,5X,'Fll =',F15.3,3X,'F12 =',F15.3,3X,'F22=',F15.3)
50 FORMAT(/,5X,'F16 =',Fl5.3,3X,'F26 =',Fl5.3,3X,'F66 =',Fl5.3)
51 FORMAT(/,5X,'F44 =',Fl5.3,3X,'F45 =',F1S.3,3X,'F55 =',Fl5.3)
52 FORMAT(//,5X,'HlI =',Fl5.3,3X,'Hl2 =',Fl5.3,3X,'H22=',F15.3)
53 FORMAT(/,5X,'Hl6 =',F15.3,3X,'H26 =',Fl5.3,3X,'H66 =',Fl5.3)
54 FORMAT(//,5X,'Jll =',F1S.3,3X,'Jl2 =',F15.3,3X,'J22=',F15.3)
55 FORMAT(/,5X,'Jl6 =',Fl5.3,3X,'J26 =',F15.3,3X,'J66 =',F15.3)
57 FORMAT(///,5X,'VIBRATION EIGENVALUE ANALYSIS -FIRST 10 MODE
*S PRINTED')

58 FORMAT(///,5X,'BUCKLING EIGENVALUE ANALYSIS -ALL MODES PRIN
*TED')

59 FORMAT(//,5X,'MMAX = NMAX =',12,5X,'STIFFNESS AND MASS/INE
*RTIA MATRICES ARE (',13,lX,'BY',lX,I3,')')

60 FORMAT(///,5X, 'MODE NUMBER', liX, 'EIGENVALUE', 14X. 'NATURAL FR
*EQUENCY (RAD/SEC)')

63 FORMAT(5X,'THE CRITICAL BUCKLING LOAD IS THE EIGENVALUE WITH

64 FORMAT( 5X, 'THE SMALLEST ABSOLUTE VALUE')
C ---------------------------------------------------------------

END
C ---------------------------------------------------------------

SUBROUTINE LAMINAT(NPLYS,TPLY,THETA,E1,E2,Gl2,Vl2,
lV21,G13,G23,PI,H, Al1,A12,A22,A16,A26,A66, A44, A45,A55,
2D1, Dl2, D22,Dl6, D26,D66, D44, D45, D55, Fli, Fl2,F22,F16,F26, F66,
3F44,F45,F55,H11,Hl2,H22,Hl6,H26,H66,Jl1,Jl2,J22,Jl6,J26,J66)

C
C ---------------------------------------------------------------
C
C THIS SUBROUTINE CALCULATES THE BENDING, EXTENSIONAL, AND
C HIGHER ORDER STIFFNESS ELEMENTS FOR THE LAMINATE.
C
C THE LAMINATE IS SYMMETRIC WITH RESPECT TO THE MIDPLANE IN
C BOTH MATERIAL PROPERTIES AND ORIENTATION ANGLE, THETA.
C THIS THESIS ASSUMES A HOMOGENEOUS LAMINATE -- MATERIAL
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C PROPERTIES ARE IDENTICAL FOR EACH PLY. THE ONLY THING THAT
C CAN CHANGE IS ORIENTATION ANGLE.
C EACH PLY ALSO HAS THE SAME THICKNESS.
C
C ---------------------------------------------------------------
C

DOUBLE PRECISION HPI,All,A12,A22,A6,A26,A66,A44,A45,
1A55, Dll, D12, D22, D16, D26, D66, D44, D45, D55, Fll, F12, F22, Fi6, F26,
2F66,F44,F45,F55,H11,H12,H22,H16,H26,H66,Jll,J12,J22,Jl6,J26,
3J66,TPLY,THETA(lO0),E1,E2,G12,V2,V21,Gl3,G23,Qll,Ql2,Q22,
4Q44, Q55, Q66, QBARl1, QBAR12,Q BARl6. QBAR22, QBAR26, QBAR44, QBAR45
5,QBAR55,QBAR66, ZK, ZK1, TH( 100), ZKO, ZK3, ZK5, ZK7, ZK9

C
C REDUCED STIFFNESS ELEMENTS IN PRINCIPLE COORDINATES

QI = El / (1.0 - V12 * V21)
Q12 = V12 * E2 /.(1.0 - V12 * V21)
Q22 = E2 / (1.0 - V12 * V21)
Q44 = G23
Q55 = G13
Q66 = G12

C INITIALIZE ALL STIFFNESS ELEMENTS TO ZERO
All =0.
A12 = 0.
A22 = 0.
A16 = 0.
A26 = 0.
A66 = 0.
A44 = 0.
A45 = 0.
A55 = 0.
Dll = 0.
D12 = 0.
D22 = 0.
D16 = 0.
D26 = 0.
D66 = 0.
D44 = 0.
D45 = 0.
D55 = 0.
Fll = 0.
F12 = 0.
F22 = 0.
F16 = 0.
F26 = 0.
F66 = 0.
F44 = 0.
F45 = 0.
F55 = 0.
H11 = 0.
H12 = 0.
H22 = 0.
H1 = 0.
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H26 = 0.
H66 = 0.
Jll = 0.
J12 = 0.
J22 = 0.
J16 = 0.
J26 = 0.
J66 = 0.

C----------------------------------------------------------------
C IN ORDER FROM THE FIRST PLY AT Z = - H/2 TO THE TOP PLY AT
C Z = + H/2, INPUT THE PLY ORIENTATION ANGLE, THETA. THEN IN
C TURN CALCULATE THE QBARS AND THE STIFFNESS ELEMENTS FOR THAT
C PLY. REPEAT THE PROCEDURE FOR ALL PLYS, THEN ADD THE PLY
C STIFFNESS ELEMENTS TOGETHER TO GET THE LAMINATE STIFFNESS
C ELEMENTS.
C INITIALIZE Z TO THE BOTTOM OF THE LAMINATE
C---------------------------------------------------------------

ZK1 = - H / 2.0
DO 100 I 1,NPLYS
TH(I) = THETA(I) * PI / 180.0

C-----------------------------------------------------------------
C COMPUTE THE QBARS - TRANSFORMED REDUCED STIFFNESS ELEMENTS
C IN GLOBAL COORDINATES.
C----------------------------------------------------------------

QBAR11 = Qll * DCOS(TH(I))**4 + 2.0 * (Q12 + 2.0 * Q66) *
1DSIN(TH(I))**2 * DCOS(TH(I))**2 + Q22 * DSIN(TH(I))**4
QBAR12 = (Qll + Q22 - 4.0 * Q66) * DSIN(TH(I))**2 *
1DCOS(TH(I))**2 + Q12 * (DSIN(TH(I))**4 + DCOS(TH(I))**4) . -

QBAR16 = (QIl - Q12 - 2.0 * Q66) * DSIN(TH(I)) * DCOS(TH(I))
1**3 + (Q12 - Q22 + 2.0 * Q66) * DSIN(TH(I))**3 * DCOS(TH(I))
QBAR22 = QI * DSIN(TH(I))**4 + 2.0 * (Q12 + 2.0 * Q66) *
1DSIN(TH(I))**2 * DCOS(TH(I))**2 + Q22 * DCOS(TH(I))**4
QBAR26 = (QI - Q12 - 2.0 * Q66) * DSIN(TH(I))**3 * DCOS(TH
l(I))+ (Q12 - Q22 + 2.0 * Q66) * DSIN(TH(I)) * DCOS(TH(I))**3
QBAR44 = Q44 * DCOS(TH(I))**2 + Q55 * DSIN(TH(I))**2
QBAR45 = (Q44 - Q55) * DCOS(TH(I)) * DSIN(TH(I))
QBAR55 = Q55 * DCOS(TH(I))**2 + Q44 * DSIN(TH(I))**2
QBAR66 = (Qil + Q22 - 2.0 * Q12 - 2.0 * Q66) *DSIN(TH(I))**2
1* DCOS(TH(I))**2 + Q66 * (DSIN(TH(I))**4 + DCOS(TH(I))**4)

C------------------------------------------------------------------
C TOP AND BOTTOM LOCATION OF PLY(I)

ZK = ZKl + TPLY
C EXTENSIONAL STIFFNESS ELEMENTS

ZKO = ZK - ZK1
All = Q1AR11 * ZKO + All
A12 = QBAR12 * ZKO + A12
A22 = QBAR22 * ZKO + A22
A16 = QBAR16 * ZKO + A16
A26 = QBAR26 * ZKO + A26
A66 = QBAR66 * ZKO + A66
A44 = QBAR44 * ZKO + A44
A45 = QBAR45 * ZKO + A45
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A55 = QBAR55 * ZKO + A55
C BENDING STIFFNESS ELEMENTS

ZK3 = (ZK**3 - ZK1**3) / 3.0
DI1 = QBAR11 * ZK3 + Dl1
D12 = QBAR12 * ZK3 + D12
D22 = QBAR22 * ZK3 4 D22
D16 = QBAR16 * ZK3 + D16
D26 = QBAR26 * ZK3 + D26
D66 = QBAR66 * ZK3 + D66
D44 = QBAR44 * ZK3 + D44
D45 = QBAR45 * ZK3 + D45
D55 = QBAR55 * ZK3 + D55

C HIGHER ORDER STIFFNESS ELEMENTS
ZK5 = (ZK**5 - ZKI**5) / 5.0
FIl = QBARII * ZK5 + Fli
F12 = QBAR12 * ZK5 + F12
F22 = QBAR22 * ZK5 + F22
F16 = QBAR16 * ZK5 + F16
F26 = QBAR26 * ZK5 + F26
F66 = QBAR66 * ZK5 + F66
F44 = QBAR44 * ZK5 + F44
F45 = QBAR45 * ZK5 + F45
F55 = QBAR55 * ZK5 + F55
ZK7 = (ZK**7 - ZK1**7) / 7.0
Hll = QBAR1l * ZK7 + Hll
H12 = QBAR12 * ZK7 + H12
H22 = QBAR22 * ZK7 + H22
H16 = QBAR16 * ZK7 + H16
H26 = QBAR26 * ZK7 + H26
H66 = QBAR66 * ZK7 + H66
ZK9 = (ZK**9 - ZKI**9) / 9.0
J1l = QBAR11 * ZK9 + Jl
J12 = QBAR12 * ZK9 + J12
J22 = QBAR22 * ZK9 + J22
J16 = QBAR16 * ZK9 + J16
J26 = QBAR26 * ZK9 + J26
J66 = QBAR66 * ZK9 + J66

C GO TO NEXT LAYER
ZK1 = ZK

100 CONTINUE
RETURN
END

C---------------------------------------------------------------
SUBROUTINE GALERK(PI,R,H,A,B,All,Al2,A22,AI6,A26,A66,A44,A45
1,A55,Dll, D12,D22, Di6,D26,D66,D44,D45,D55, Fll,F12,F22, Fi6, F26
2,F66, F44, F45, F55, Hll, H12,H22, H16,H26,H66,JliJi2,J22,Ji6,J26
3, J66, NBUCVIB, MMAX, MSIZE, RHO, STIFF, MASS, BETA, ALPHA, EVAL, EVEC,
4MSIZESQ, REVEC)

C ---------------------------------------------------------------
C THIS SUBROUTINE GENERATES THE GALERKIN EQUATIONS AND FORMS
C THE MASS AND STIFFNESS MATRICES. THEN IT CALLS DGVCRG, AN
C IMSL SUBROUTINE WHICH SOLVES THE EIGENVALUE PROBLEM:
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C [STIFFI{X = (OMEGA-2 OR N1BAR)[MASS]{XI.

DOUBLE PRECISION PI,R,H,A,B,A11,A12,A22,A6,A26,A66,A44,
1A45,A55,Dll,D12,D22,Dl6,D26,D66,D44,D45,D55,F11,Fl2,F22,F1B,
2F26, F66, F44, P45, F55, Hl, H12, H22, HiS,H26,H66,J11, J12,J22,Jl6,
3J26, J66, STIFF(MSIZE, MSIZE) ,MASS(MSIZE, MSIZE),AUOI BUO, CUO, EUO
4, GUO, AVO, BVO, OVO, EVO, GVO, AW, N, CW, EN,GW, AJX, BJX, CJX, EJX, GJX,
5AJY, EJY, CJY, EJY, GJY, AUOMASS, BUOMASS, CUOMASS, EUOMASS, GUOMASS,
GAVOMASS, EVOMASS, CVOMASSJ EVOMASS, GVOMASS, AWNASS, BWMASS, CWMASS
7, EWMASS, GWMASS, AJXMASS, BJXMASS, CJXM4ASS, EJXMASS, GJXMASS, AJYMA
8SS, BJYMASS, CJYMASS, EJYMASS, GJYM4ASS RHO, I2BARPR, I3BARPR, I5BAR
9,17,Il, I4BAR
INTEGER P,Q

C THESE VARIABLES NEEDED FOR THE IMSL EIGENVALUE SOLVER.
DOUBLE PRECISION BETA(MSIZE) ,REVAL, OMEGA, AGEVAL, AGEVEC,
1REVEC(MSIZESQ)
DOUBLE COMPLEX ALPHA(MSIZE),EVAL(MSIZE),EVEC(MSIZE,MSIZE)

C ---------------------------------------------------------------
C NUMBER OF TERMS IN THE ADMISSIBLE FUNCTIONS

NMAX = MMAX
C GENERATE GALERKIN EQUATIONS

DO 10 P = 1,MMAX
DO 10 Q = 1,NMAX
DO 20 M = 1,MMAX

C DO 20 N = 1,NMAX
C COMPUTE-----STIFFNESS------MATRIX----ELEMENTS---
C-------------------------------------------------

IF C-- --- - E- ----P - --- --- --- --N---E-- --- --- --T--EN-
C F( Q N. Q )TE

0 AUO=
1C*I***6A*2-4P*2AF6***/BH**)6O
BUO = **D6H*-*P*2AF6)Q*/BH*2R/.
BUO =3P*2D86P*2D2**24P*2F68P*2F2**
1 /CHP**2*R)/24.O DI)H*24Pl**668PI**l2**
CUOH*2*R 24
1CU =8P*3F64P*3F2****-*IA2B***2P/B
1H*(***3F6+)/13F2*P2*-3P*A2B*2H*OP/
EUO =)/2.
1-C =4P*2A**6**24P*2*1**2P*)R*+I**
1-(P**2**2*66*Q**2)/(A*BAl*B*2P*2*R**2)/16. 0A
GUO =***)(ABR*2/1.
1-C =4P*2A84P*2A2***R*-I**6**)R*/6
AVO=I**A64P*2Al)PQR*2P*2D6P*)R*/6
1C*I**68H*-*I*2F6**/(*2R/4 0
1EVO = D6H*-4P*2F6)PQ(***)2.
1(O =6P*2A**2**28P*2A**2)Q*+4P*2B*
1*F66*PI**2***2*D6*H**2*P**2)/A**H)Q*4P**2*R)/4.
CVO=*I**B**6**2)P*)(**H**)2.

1-(4*PI**3*A*F22*Q**3-3*PI*A*A22*B**2*H**2*Q)/(B**2*H**2*R)/l
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12.0
EVO

1-( (4*PI**2*A66+4*PI**2*A12)*P*Q*R**2-PI**2*D66*P*Q)/R**2/16-
GVO =
1-( (4*PI**2*A**2*A22*Q**2+4*PI**2*A66*B**2*P**2)*R**2+PI**2*B
1**2*D66*P**2)/(A*B*R**2)/16. 0
AW =

1-( ((32*PI**3*A**2*H66+16*PI**3*A**2*H12+(-24*PI**3*A**2*F66-
112*PI**3*A**2*F12)*H**2)*P*KQ**2+( 16*PI**3*B**2*H11-12*PI**3*
1B**2*F11*H**2)*P**3+(9*PI*A**2*A55*B**2*H**4-72*PI*A**2*B**2
1*D515*H**2+-144*PI*A**2*B**2*F55)*P)*R**2+( 16*PI**3*A**2*J66-
112*PI**3*A**2*H**2*H66)*P*Q**2)/(A**2*B*H**4*R**2)/36. 0
BW =

1-( ((16'*PI**3*A**2*H22-12*PI**3*A**2*F22*H**2)*Q**3+( (32*PI**
13*B**2*H66+16*PI**3*B**2*112+( -24*PI**3*B**2*F66-12*PI**3*B*
1*2*F12 )*H**2) *P**2+9*PI*A**2*A44*B**2*H**4-72*PI*A**2*B**2*D
144*H**2-.144*PI*A**2*B**2*F44)*Q)*R**2+( 16*PI**3*A**2*J22-12*
1PI**3*A**2*H**2*H22)*Q**3+(9*PI*A**2*B**2*D22*H**4-12*PI*A**
12*B**2*F22*H**2 )*Q) /( A*B**2*H**4*R**2 )/36. 0

CW =
1-( (16*PI**4*A**4*H22*Q**4+( (64*pI**4*A**2*B**2*H66+32*PI**4*
IA**2*B**2*Hl2 )*P**2+9*PI**2*A**4*A44*B**2*H**4-72*PI**2*A**4
1*B**2*D44*H**2+144*PI**2*A**4*B**2*F44) *Q**2+16*PI**4*B**4*H
111*P**4+(9*PI**2*A**2*A55*B**4*H**4-72*PI**2*A**2*B**4*D55*H
1**2+144*PI**2*A**2*B**4*F55)*P**2)*R**2+16*PI**4*A**4*J22*Q*
1*4+( 16*PI**4*A**2*B**2*J66*P**2-24*PI**2*A**4*B**2*F22*H**2)
1*Q**2+9*A**4*A22*B**4*H**4)/(A**3*B**3*H**4*R**2)/36. 0
EW =
1-((8*PI**3*F66+4*PI**3*Fl2)*P*Q**2-3*PI*A2*B**2*{**2*P)/(B*
1E**2*R)/12. 0
GW =
1-( 4*PI**3*A*F22*Q**3-3*PI*A*A22*B**2*H**2*Q) /(B**2*H**2*R) /1
12.0
AJX

1-( ((16*PI**2*A**2*H66+9*Pl**2*A**2*D66*H**4-24*PI**2*A**2*F6
16*H**2)*Q**2+( 16*PI**2*B**2*Hll+9*PI**2*B**2*D11*H**4-24*PI*
1*2*B**2*F11*H**2)*P**2+9*A**2*A55*]B**2*H**4-72*A**2*B**2*D55
1*H**2+144*A**2*B**2*F55)*R**2+( 16*Pl**2*A**2*J66-24*PI**2*A*
1*2*H**2*H66+9*PI**2*A**2*F66*H**4) *Q**2) /(A*B*H**4*R**2 )/36.
BJX =

1-( 16*PI**2*H66+16*PI**2*Hl2+(9*PI**2*D66+9*PI**2*D12)*H**4+(
1 -24*PI**2*F66-24*PI**2*F12)*H**2)*P*Q/H**4/36. 0

CJx =
1-( ((32*PI**3*A**2*H66+16*PI**3*A**2*H12+(-24*PI**3*A**2*F66-
112*PI**3*A**2*F12)*H**2)*P*Q**2+(16*PI**3*B**2*H11-12*PI**3*
1B**2*F11*H**2)*P**3+(9*PI*A**2*A55*B**2*H**4-72*PI*A**2*B**2
1*D55*H**2+144*PI*A**2*B**2*F55)*P)*R**2+(16*PI**3*A**2*J66-1
12*PI**3*A**2*H**2*H66)*P*Q**2)/(A**2*B*H**4*R**2)/36. 0
EJX =
1(3*PI**2*A*D66*H**2-4*PI**2*A*F66)*Q**2/(B*H**2*R)/. 0
GJX =
1(3*PI**2*D66*H**2-4*PI**2*F66)*P*Q/(H**2*R)/24. 0
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AJY
1-i 16*PI**2*H66+16*PI**2*H12+(9*PI**2*D66+9*PI**2*D12)*H**4+(
1 -24*PI**2*F66-24*PI**2*F12)*H**2)*P*Q/H**4/36. 0
BJY =

1-( ((16*PI**2*A**2*H22+9*PI**2*A**2*D22*H**4-24*PI**2*A**2*F2
412*H**2)*Q**2.( 16*PI**2*B**2*H66+9*PI**2*B**2*D66*H**4-24*PI*
1 *2*B**2*F66*H**2 )*P**2+9*A**2*A44*B**2*H**4-7 2*A**2*B**2*D44
1*H**2+144*A**2*B**2*F44)*R**2+( 16*PI**2*A**2*J22-24*PI**2*A*
1*2*H**2*H22+9*PI**2*A**2*F22*H**4)*Q**2)/(A*B*H**4*R**2)/36.
CJY=

1-( ((16*PI**3*A**2*H22-12*PI**3*A**2*F22*H**2)*Q**3+( (32*PI**
13*B**2*H66+16*PI**3*B**2*Hl2+( -24*PI**3*B**2*F66--12*PI**3*B*
1*2*Fl2)*H**2)*P**2+9*PI*A**2*A44*B**2*H**4-72*PI*A**2*B**2*D
144*H**2+144*PI*A**2*B**2*F44)*Q)*R**2+( 16*PI**3*A**2*J22-12*
1PI**3*A**2*H**2*H22 )*Q**3+( 9*PI*A**2*B**2*D22*H**4-12*PI*A**
12*B**2*F22*H**2)*Q)/(A*B**2*H**4*R**2)/36. 0
EJY =
1 ((3*PI**2*D66+6*PI**2*D12 )*H**2-4*PI**2*F66-8*PI**2*F12 )*P*Q
1 /(H**2*R)/24.0
GJY=
1( (6*PI**2*A**2*D22*H**2-8*PI**2*A**2*F22)*Q**2+(4*PI**2*B**2
1*F66-3*PI**2*B**2*D66*H**2)*P**2)/(A*B*H**2*R)/24.O

C
ELSEIF (MOD(M + P,2) .NE. 0 .AND. MOD(N + Q,2) .NE. 0) THEN

C
AUO
1-((12*Dl6*H**2-16*F16)*N*P**2+(6*Dl6*H**2-8*F16)*M**2*N)*Q/(
1 ((3*H**2*P**2-3*H**2*M**2 )*Q**2-3*H**2*N**2*P**2+3***2*f**2
1*N**2 )*R)
BIJO =
1-(6*A*D26*H**2-8*A*F26)*d*N**2*Q/( ((B*H**2*P**2-B*H**2*M**2)
1*Q**2-B*H**2*N**2*P**2+B*H**2*M**2*N**2 )*R)
CU0 =
1( 16*PI**2*B**2*F1G*M*N*P**2+24*PI**2*A**2*F26*M*N**3+(8*PI**
12*B**2*Fl6*M**3-12*A**2*A26*B**2*H**2*M)*N)*Q/( ((3*PI*A*B**2
1*H**2*P**2-3*PI*A*B**2*H**2*M**2 )*Q**2-3*PI*A*B**2*H**2*N**2
1*P**2+3*PI*A*B**2*H**2*M**2*N**2 )*R)
EUO =
1(4*A16*N*P**2+4*A16*M**2*N)*Q/( (P**2-M**2)*Q**2-N**2*P**2+M*
1*2*N**2)
GUO=
1 (4*A16*B**2*M*P**2+4*A**2*A26*M*N**2)*Q/( (A*B*P**2-A*B*M**2)
1 *Q**2-A*B*N**2*P**2+A*B*M**2*N**2)
AVO =

1-( (12*A**2*D26*H**2-16*A**2*F26)*N*P*Q**2+(8*B**2*F16-6*B**2
1*Dl6*H**2)*M**2*N*P)/( ((3*A*B*H**2*P**2-3*A*B*H**2*M**2)*Q**
12-3*A*B*H**2*N**2*P**2+3*A*B*H**2*M**2*N**2 )*R)
eVO =
1-(6*D26*H**2-8*F26)*M*N**2*P/( ((3*H**2*P**2-3*H**2*M**2)*Q**
12-3*H**2*N**2*P**2+3*H**2*t4**2*N**2 )*R)
Cvo =
1( 16*PI**2*A**2*F26*M*N*P*Q**2+(8*PI**2*A**2*F26*4*N**3+(-B*P
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1I**2*B**2*Fl6*k4**3-12*A**2*A26*B**2*H**2*M)*N)*P)/( ((3*PI*A*
1*2*B*H**2*P**2-3*PI*A**2*B*H**2*bl**2)*Q**2-3*PI*A**2*B*H**2*
1N**2*P**2+3*PI*A**2*B*H**2*M**2*N**2) *R)
EVO =
1 (4*A**2*A26*N*P*Q**2+4*A16*B**2*M**2*N*P)/( (A*B*P**2-A*B*M**
12) *Q**2-A*B*N**2*P**2+A*B*M**2*N**2)

GVO =
1 (4*A26*kd*P*Q**2+4*A26*M*N**2*P) /( (P**2-M**2)*Q**2-N**2*P**2+
1k4**2*N**2)
AW =
iC ((64*PI**2*A**2*H26-48*PI**2*A**2*F26*H**2)*N**3+( (192*PI**
12*B**2*H16-144*PI**2*B**2*Fl6*H**2) *M**2+36*A**2*A45*B**2*H*
1*4-288*A**2*B**2*D45*H**2+576*A**2*B**2*F45)*N)*P*Q*R**2+( (6
14*PI**2*A**2*J26-48*PI**2*A**2*H**2*H26)*N**3+(36*A**2*B**2*
1D26*H**4-48*A**2*B**2*F26*H**2)*4)*P*Q)/( ( (*PI*A*B**2*H**4* -

1P**2-9*PI*A*B**2*H**4*M**2 )*Q**2-9*PI*A*B**2*H**4*N**2*P**2+
19*PI*A*B**2*H**4*M**2*N**2 )*R**2)
BW
1( ((192*PI**2*A**2*H26-144*PI**2*A**2*F26*H**2)*M*N**2+(64*PI
1**2*B**2*Hl6-48*PI**2*B**2*Fl6*H**2)*M**3+(36*A**2*A45*B**2*
1H**4-288*A**2*B**2*D45*H**2+576*A**2*B**2*F45) *M) *P*Q*R**2+ (
164*PI**2*A**2*J26-48*PI**2*A**2*H**2*H26)*M*N**2*P*Q)/( ((9*P
II*A**2*B*H**4*P**2-9*PI*A**2*B*H**4*M**2 )*Q**2-9*PI*A**2*B*H
1**4*N**2*P**2+9*PI*A**2*B*H**4*M**2*N4**2 )*R**2)
CW =
1( (256*PI**2*A**2*H26*M*N**3+(256*PI**2*B**2*H16*M**3+(72*A**
12*A45*B**2 *E**4-576*A**2*B**2*D45*H**2 +1152 *A**2*B**2 *F45 )*M
1 )*N)*P*Q*R**2+( 128*PI**2*A**2*J26*M*N**3-96*A**2*B**2*F26*H*
1*2*M*N)*P*Q)/( ((9*A**2*B**2*H**4*P**2-9*A**2*B**2*H**4*M**2)
1*Q**2-9*A**2*B**2*H**4*N**2*P**2+9*A**2*B**2*H**4*4**2*N**2)
1*R**2)
EW =
1 ( *PI**2*A**2*F26*N**3+( 6*PI**2*B**2*Fl6*M**2-4*A**2*A26*B**
12*H**2)*N)*P*Q/( ((PI*A*B**2*H**2*P**2-PI*A*B**2*H**2*M**2)*Q
1**2-PI*A*B**2*H**2*N**2*P**2+PI*A*B**2*H**2*M**2*N**2) *R)
GW =
1 (24*PI**2*A**2*F26*M*N**2-8*PI**2*B**2*F16*M**3-12*A**2*A26*
1B**2*H**2*M) *P*Q/( ((3*PI*A**2*B*H**2*P**2-3*PI*A**2*B*H**2*M
1**2) *Q**2-3*PI *A**2*B*H**2*N**2*P**2+3*PI*A**2*B*H**2*M**2*N
1**2)*R)
AJX =
1( (128*H16+36*D16*H**4-144*F6*H**2)*N.*P**2+(36*Dl6*H**4-48*F
116*H**2)*M**2*N)*Q/( (9*H**4*P**2-9*H**4*M**2)*Q**2-9*H**4*N*
1*2*P**2+9*H**4*M**2*N**2)
BJX =
1( ((128*PI**2*B**2*H16+36*PI**2*B**2*D16*H**4-144*PI**2*B**2*
1Fl6*H**2)*M*P**2+(64*PI**2*A**2*H26+36*PI**2*A**2*D26*H**4-9
16*PI**2*A**2*F26*H**2) *M*N**2+ (48*PI**2*B**2*F16*H**2-64*PI*
1*2*B**2*Hl6)*M**3+(36*A**2*A45*B**2*H**4-288*A**2*B**2*D45*H
1**2+576*A**2*B**2*F45)*M)*Q*R**2+(64*PI**2*A**2*J26-96*PI**2
1*A**2*H**2*H26+36*PI**2*A**2*F26*H**4)*M*N**2*Q)f( ((9*PI**2*
1A*B*H**4*P**2-9 *PI **2*A*B*H**4*M**2 )*Q**2 -9*PI **2 *A*B*H**4*N

141



1**2*P**2+9*PI**2*A*B*H**4*M**2*N**2 )*R**2)
CJx =
1( ((256*PI**2*B**2*H16-96*PI**2*B**2*Fl6*H**2)*M*N*P**2+(64*P
1I**2*A**2*H26-48*PI**2*A**2*F26*H**2)*M*N**3+( (-64*PI**2*B**
12*Hl6-48*PI**2*B**2*F16*H**2 )*M**3+ (36*A**2*A45*B**2*H**4-28
18*A**2*B**2*D45*H**2+576*A**2*B**2*F45)*M)*N)*Q*R**2+( (64*PI
1**2*A**2*J26-48*PI**2*A**2*H**2*H26 )*M*N**3+(36*A**2*B**2*D2
16*H**4-48*A**2*B**2*F26*H**2)*M*N)*Q) /( ( (*PI*A*B**2*H**4*P*
1*2-9*PI*A*B**2*H**4*M**2 )*Q**2-9*PI*A*B**2*H**4*N**2*P**2+9*
1PI*A*B**2*H**4*M**2*N**2 )*R**2)
EJX =
1-((6*Dl6*H**2-16*Fl6)*t4*P**2+(12*Dl6*H**2-8*Fl6)*M**2*N)*Q/(
1( (3*H**2*P**2-3*H**2*M**2)*Q**2-3*H**2*N**2*P**2+3*H**2*M**2
1*N**2)*R)
GJX =
1( (6*B**2*Dl6*H**2-16*B**2*Fl6)*M*P**2+(16*A**2*F26-12*A**2*D--
126*9H**2)*M*N**2+8*B**2*Fl6*M**3) *Q/( ((3*A*B*H**2*P**2-3*A*B*
1H**2*M**2 )*Q**2-3*A*B*H**2*N**2*P**2+3*A*B*H**2*M**2*N**2 )*R
1)
AJY
1 ( ((128*PI**2*A**2*H26+36*PI**2*A**2*D26*H**4-144*PI**2*A**2*
lF26*H**2)*N*P*Q**2+( (48*PI**2*A**2*F26*H**2-64*PI**2*A**2*H2
16)*N**3+( (64*PI**2*B**2*H16+36*PI**2*B**2*D16*H**4-96*PI**2*
1B**2*Fl6*H**2) *M**2+36*A**2*A45*B**2*H**4-288*A**2*B**2*D45*
1H**2+576*A**2*B**2*F45)*N)*P)*R**2+(128*PI**2*A**2*J26-144*P
1 I**2*A**2*H**2*H26+36*PI**2*A**2*F26*H**4) *N*P*Q**2+ (48*PI**
12*A**2*H**2*H26-64*PI**2*A**2*J26)*N**3*P)/( ((9*PI**2*A*B*H*
1*4*P**2-9*PI**2*A*B*H**4*M**2) *Q**2-9*PI**2*A*B*H**4*N**2*P*
1*2+9*PI**2*A*B*H**4*M**2*N**2 ) ***2)
BJY =
1 ((128*H26+36*D26*H**4-144*F26*H**2 )*M*P*Q**2+ (36*D26*H**4-48
1*F26*H**2)*M*N**2*P)/( (9*H**4*P**2-9*H**4*M**2)*Q**2-9*H**4*
1N**2*P**2+9*H**4*M**2*N**2)
CJY =
1( ((256*PI**2*A**2*H26-96*PI**2*A**2*F26*H**2)*M*N*P*Q**2+( (-
164*PI**2*A**2*H26-48*PI**2*A**2*F26*H**2)*M*N**3+( (64*PI**2*
1B**2*Hl6-48*PI**2*B**2*Fl6*H**2)*M**3+(36*A**2*A45*B**2*H**4
1-288*A**2*B**2*D45*H**2+576*A**2*B**2*F45)*M)*N)*P)*R**2.( 12
18*PI**2*A**2*J26-48*PI**2*A**2*H**2*126 )*M*N*P*Q**2-84*PI**2
1*A**2*J26*M*N**3*P)/( ((9*PI*A**2*B*H**4*P**2-9*PI*A**2*B*H**
1 4*M**2) *Q**2-9 *PI*A**2*B*H**4*N**2*P**2+9*PI *A**2*B*H**4*M**
12*N**2 )*R**2)
EJY =
1-( (6*A*D26*H**2-16*A*F26)*N*P*Q**2+8*A*F26*N**3*P)/( ((B*H**2
1*P**2-B*H**2*M**2) *Q**2-B*FI**2*l**2*P**2+B*H**2*M**2*N**2 )*R
1)
GJY
1-( (6*D26*H**2-16*F26)*M*P*Q**2+8*F26*N**2*P)/( ((3*H**2*P**
12-3*EI**2*M**2 )*Q**2-3*H**2*N**2*P**2+3*H**2*M**2*N**2) *R)

C
ELSE

c
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AUO = 0.0
BUO = 0.0
CUO = 0.0
EUO = 0.0
GUO = 0.0
AVO = 0.0
BVO = 0.0
CVO = 0.0
EVO = 0.0
GVO = 0.0
AW = 0. 0

BW= 0. 0
CW' = 0. 0
EW = 0. 0
GW = 0. 0
AJX = 0.0
BJX =0.0
CJX = 0.0
EJX =0.0
GJX = 0.0
AJY = 0.0
BJY = 0.0
CJY =0.0
EJY = 0.0
GJY = 0.0
END IF

c ---------------------------------------------------------------
C STORE THESE TERMS IN THE STIFFNESS MATRIX
C ---------------------------------------------------------------

STIFF(I,J) = AUO
STIFF(I,J + MMAX * NMAX) = BUO
STIFF(I,J + 2 * MMAX * NMAX) = CUO
STIFF(I,J + 3 * MMAX * Nt4AX) = EUO
STIFF(I,J + 4 * MMAX * NMAX) = GUO
STIFF(I + MMAX * NMAX,J) = AVO
STIFF(I + WMAX * NMAX,J + MMAX * NMAX) = BVO
STIFF(I + idHAX * NMAX,J + 2 * MMAX * NMAX) = CVO
STIFF(I + MMAX * NMAX,J + 3 * MMAX * NMAX) = EVO
STIFF(I + MMAX * NMAX,J + 4 * MMAX * NMAX) = GVO
STIFF(I + 2 * MMAX * NMAX,J) AWM
STIFF(I + 2 * MMAX * NMAXJJ + MMAX * NMAX) = B
STIFF(I + 2 * MMAX * NHAX,J + 2 * MMAX * NMAX) = CW
STIFF(I + 2 * MMAX * NMAX,J + 3 * MMAX * NMAX) =EW
STIFF(I + 2 * MMAX * NMAXJJ + 4 * MMAX * NMAX) = GW
STIFF(I + 3 * MMAX * WMAX,J) =AJX
STIFF(I + 3 * MMAX * NMAX,J + MMAX * NMAX) = BJX
STIFF(I + 3 * NMAX * NMAX,J + 2 * MMAX * NMAX) = CJX
STIFF(I + 3 * MMAX * NMAX,J + 3 * MMAX * NMAX) = EJX
STIFF(I + 3 * MMAX * NHAX,J + 4 * MMAX * NMAX) = GJX
STIFF(I + 4 * NMAX * NMAX,J) =AJY
STIFF(I + 4 * MMAX *NMAX,J + MMAX * NMAX) = BJY
STIFF(I + 4 * MMAX * NMAX,J + 2 * MMAX * NMAX) = CJY
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STIFF(I + 4 * MMAX * NMAXJ + 3 * MMAX * NMAX) = EJY
STIFF(I + 4 * MMAX * NMAX,J + 4 * MMAX * NMAX) = GJY

C ---------------------------------------------------------------
C COMPUTE MASS MATRIX ELEMENTS
C---------------------------------------------------------------
C FIRST CALCULATE THE MASS MOMENTS OF INERTIA.

I2BARPR = RHO * H**3 / (15.0 * R)
I3BARPR = RHO * H**3 / (60.0 * R)
ILBAR = RHO * H**3 * 4.0 / 315.0
17 = RHO * H**7 / 448.0
Ii = RHO * H
I4BAR = RHO * H**3 * 17.0 / 315.0
AUOMASS = 0.0
BUOMASS = 0.0
CUOMASS = 0.0
EUOMASS = 0.0
GUOMASS = 0.0
AVOMASS = 0.0
EVOMASS = 0.0
GVOMASS = 0.0
EWMASS = 0.0
GWMASS = 0.0
BJXMASS = 0.0
EJXMASS = 0.0
GJXMASS = 0.0
AJYMASS = 0.0
EJYMASS = 0.0
GJYMASS = 0.0

C
IF(M .EQ. P .AND. N .EQ. Q) THEN

C
IF(NBUCVIB .EQ. 1) THEN

C VIBRATIONS PROBLEM - WE ARE LOOKING FOR THE NATURAL
C FREQUENCIES

BVOMASS = -1.0 * (
1A*B*I2BARPR/4.0 )
CVOMASS = -1.0 * (
1-PI*A*I3BARPR*Q/4.0
AWMASS = -1.0 * (
1-PI*B*I5BAR*P/4.0
BWMASS = -1.0 * (
1-PI*A*I5BAR*Q/4.0
CWMASS = -1.0 * (
1 ( 16*PI**2*A**2*I7*Q**2+16*PI**2*B**2*I7*P**2+9*A**2*B**2*H**
14*I1)/(A*B*H**4)/36.0 )
AJXMASS = -1.0 * (
1A*B*I4BAR/4.0
CJXMASS = -1.0 * (
1-PI*B*I5BAR*P/4.0
BJYMASS = -1.0 * (
1A*B*I4BAR/4.0
CJYMASS = -1.0 * (
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1-PI*A*I5BAR*Q/4. 0)
ELSE

C BUCKLING PROBLEM -WE ARE LOOKING FOR THE CRITICAL BUCKLING
C LOADS

BVOMASS = 0.0
CVOMASS = 0.0
AWMASS = 0.0
BWMASS = 0.0
CWHASS =-1.0*

1-PI**2*B*P**2/A/4. 0
AJXMASS = 0.0
CJXMASS = 0.0
BJYMASS = 0.0
CJYMASS = 0.0

* ENDIF

ELSE
C

BVOMASS = 0.0
CVOMASS = 0.0
AWMASS = 0.0
BWMASS = 0.0
CWMASS = 0.0
AJXMASS =0.0
CJXMASS = 0.0
BJYMASS = 0.0

C CJYMASS = 0.0

ENDIF
C ---------------------------------------------------------------
C STORE THESE TERMS IN THE MASS MATRIX
C ---------------------------------------------------------------

MASS(I,J) = AUOMASS
MASS(I,J + MMAX * NMAX) = BUOMASS
MASS(I,J + 2 * MMAX * NMAX) = CUOMASS
MASS(I,J + 3 * MMAX * NMAX) = EUOMASS
MASS(I,J + 4 * MMAX * NMAX) = GUOMASS
MASS(I + MMAX * NMAX,J) = AVOMASS

c MASS(I + MMAX * NMAX,J + MMAX * NMAX) = BVOMASS
MASS(I + MMAX * NMAX,J + 2 * MMAX * NMAX) = CVOMASS
MASS(I + MMAX * NMAX,J + 3 * MMAX * NMAX) = EVOMASS
MASS(I + MMAX * NMAX,J + 4 * MMAX * NMAX) = GVOMASS
MASS(I + 2 * MMAX * NMAX,J) =AWMASS
MASS(I + 2 * MMAX * NMAX,J + MMAX * NMAX) = BWMASS
MASS(I + 2 * MMAX * NMAX,J + 2 * MMAX * NMAX) = CWMASS
MASS(I + 2 * NMAX * NMAX,J + 3 * MMAX * NMAX) = EWMASS
MASS(I + 2 * MMAX * NMAX,J + 4 * MMAX * NMAX) = GWMASS
MASS(I + 3 * MMAX * NMAX,J) =AJXMASS
MASS(I + 3 * MMAX * NMAX,J + MMAX * NMAX) = BJXMASS
MASS(I + 3 * MMAX *NMAX,J + 2 * MMAX* NMAX) = CJXMASS

t MASS(I + 3 * MMAX * NMAX,J + 3 * MMAX * NMAX) = EJXMASS
MASS(I + 3 * MMAX * NMAX,J + 4 * WHAX * NMAX) = GJXMASS
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MASS(I + 4 * MMAX * NMAX,J) = AJYMASS
MASS(I + 4 * MMAX * NMAX,J + MMAX * NMAX) = BJYMASS
MASS(I + 4 * MMAX * NMAX,J + 2 * MMAX * NMAX) = CJYMASS
MASS(I + 4 * MMAX * NMAX,J + 3 * MMAX * NMAX) = EJYMASS
MASS(I + 4 * MMAX * NMAX,J + 4 * MMAX * NMAX) = GJYMASS

C ---------------------------------------------------------------
J=J+ 1

20 CONTINUE
I = I +
J= 1

10 CONTINUE
C---------------------------------------------------------------
C CALL THE IMSL LIBRARY SUBROUTINE. USE THE MASS AND STIFFNESS
C MATRICES AS INPUT AND FIND THE EIGENVALUES AND EIGENVECTORS.

CALL DGVCRG(MSIZE,STIFF,MSIZE,MASSMSIZE,ALPHA,BETA,EVEC,
1MSIZE)
DO 40 I = 1,MSIZE
IF(BETA(I) .NE. 0.0) THEN
EVAL(I) = ALPHA(I) / BETA(I)
ELSE
EVAL(I) = (1.OD+30 , O.OD+O0)
ENDIF

40 CONTINUE
IF(NBUCVIB .EQ. 1) THEN

C
C PRINT OUT THE FIRST 10 MODES FOR THE VIBRATION PROBLEM
C

DO 50 I = 1)10
REVAL = DREAL(EVAL(I))
AGEVAL = DIMAG(EVAL(I))
IF(ABS(AGEVAL) .GT. 1.OD-15) THEN
WRITE(2,115) I
ELSEIF(REVAL .GT. 1.OD+28) THEN
WRITE(2,125) I
ELSEIF(REVAL .LT. 0.0) THEN
WRITE(2,120) I
ELSE
OMEGA = SQRT(REVAL)
WRITE(2,130) I,REVAL,OMEGA
ENDIF

50 CONTINUE
C

ELSE
C
C PRINT OUT THE CRITICAL BUCKLING LOAD. THE CRITICAL
C BUCKLING LOAD IS THE EIGENVALUE WITH THE SMALLEST ABSOLUTE
C VALUE.
C

DO 55 1 = 2,MSIZE
IF(ABS(DIMAG(EVAL(I-1))) .GT. 1.OD-15) THEN
GO TO 55
ENDIF
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IF(ABS(DREAL(EVAL(I))) .GT. ABS(DREAL(EVAL(I-1))) .AND. ABS(
1DREAL(EVAL(I-1))) .LT. 1.OD+28) THEN
WRITE(2,220) DREAL(EVAL(I-1))
ENDIF

55 CONTINUE
C

END IF
C
C PRINT OUT THE 1ST MODE OF THE DEFLECTION, W(X,Y), ALONG THE
C MIDLINES OF THE PANEL: X = A/2 AND Y =B/2
C
C PRINT OUT THE W EIGENVECTOR, CMN
C

WRITE( 2,500)
WRITE(2, 510)
MNWMIN = 1 + 2 * MMAX * NMAX
MNWMAX = 3 * MMAX * NMAX
DO 400 I M NWWIN, MNWMAX
REVEC(II) =DREAL(EVEC(I,1))
AGEVEC = DIMAG(EVEC(I,1))
IF(ABS(AGEVEC) .GT. 1.OD-15) THEN
WRITE(2,520) I,II,REVEC(II)
ELSE
WRITE(2,530) I,II,REVEC(II)
END IF
II = II + 1

400 CONTINUE
C
C DETERMINE W(X=A/2,Y)
C

ASTEP = A /50.0
ESTEP = B /50.0
XCOORD = A /2.0
YCOORD = 0.0
WRITE(2, 540)
WRITE(2, 542)

801 WHODE = 0.0
JJJ= 1
DO 470 M = 1,MMAX
DO 472 N = 1,NMAX
WMODE = WHODE + REVEC(JJJ)*SIN(M*PI*XCOORD/A)*SIN(N*PI*YCOOR
1D/B)
JJJ = JJJ + 1

472 CONTINUE
470 CONTINUE

WRITE(2, 550) YCOORD, WMODE
YCOORD = YCOORD + BSTEP
IF(YCOORD .GT. B) THEN
GO TO 800
ELSE
GO TO 801
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END IF
C
800 YCOORD = B /2.0
C
C DETERMINE W(X,Y=B/2)
C

XCOORD = 0.0
WRITE(2, 560)
WRITE(2, 570)

810 WMODE = 0.0
JJJ = 1
DO 480 M = 1, MMAX
DO 482 N = 1, NMAX
WMODE = WMODE + REVEC(JJJ)*SIN(M*PI*XCOORD/A)*SIN(N*PI*YCOOR

1D/B)
JJJ = JJJ + 1

482 CONTINUE
480 CONTINUE

WRITE( 2, 550)XCOORD, WMODE
XCOORD = XCOORD + ASTEP
IF(XCOORD .GT. A) THEN
GO TO 850
ELSE
GO TO 810
END IF

C ---------------------------------------------------------------
115 FORMAT(/,gX, 13, liX, 'EIGENVAIJUE IS COMPLEX')
120 FORMAT(/,gX,I313.lX, 'EIGENVALJE IS NEGATIVE')
125 FORI4AT(/,9X,13,11X,'EIGENVALUE IS INFINITE')
130 FORMAT(/,gXJ13, OX, D20. 13, 12X,D20. 13)
200 FORMAT(/,9X, 13, lOX, D20. 13)
220 FORMAT(//,5X,'CRITICAL BUCKLING LOAD = ',1X,D20.13)
500 FORMAT(//,5X,'W EIGENVECTOR, CMN, FOR 1ST MODE')
510 FORMAT(//,5X, 'M,N',1OX,'CMN')
520 FORMAT(/,5X, 14,2X, 14, 12X,D20. 13,3X, 'COMPLEX')
530 FORMAT( /, SX, 4,2X,14, 12X,D20. 13)
540 FORMAT(//,5X, 'DEFLECTION, W(X=A/2,Y)')
542 FORMAT(//,5X,'Y (IN.)',1OX,'W(A/2,Y) (IN.)')
550 FORMAT(/,5X,F6.2,I1X,E15.8)
560 FORMAT(//,5X, 'DEFLECTION, W(X,Y=B/2)')
570 FORMAT(//,5X,'X (IN.)',1OX,'W(X,B/2) (IN.)')
850 RETURN

END
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The next listing is the code for clamped boundary conditions.

As stated in chapter III, the only part of the program that is

boundary condition dependant is subroutine "GALERK" (with the

exception of a few format statements in the main program).
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****** Clamped Boundary Condition ******

C ---------------------------------------------------------------
SUBROUTINE GALERK(PIRH,A,B,All,AI2,A22,A16,A26,A66,A44,A45
1,A55,D11,D12,D22,D16,D26, D66,D44, D45, D55, Fll, F12,F22, Fi6, F26
2, F66, F44, F45, F55, Hll, H12, H22, H16, H26, H66, Jil, J12, J22, Ji6. J26
3, J66, NBUCVIB, MMAX, MSIZE, RHO, STIFF, MASS, BETA, ALPHA, EVAL, EVEC,
4MSIZESQ, REVEC)

C---------------------------------------------------------------
C THIS SUBROUTINE GENERATES THE GALERKIN EQUATIONS AND FORMS
C THE MASS AND STIFFNESS MATRICES. THEN IT CALLS DGVCRG, AN
C IMSL SUBROUTINE WHICH SOLVES THE EIGENVALUE PROBLEM:
C [STIFF]{X} = (OMEGA^2 OR NlBAR)[MASS]{X}.
C ---------------------------------------------------------------

DOUBLE PRECISION PI,R,H,A,B,A1i,Al2,A22,AS,A26,A66,A44,
1A45, A55, D11,DI2, D22, Di6,D26, D66, D44, D45, D55, Fli, FI2, F22, F16,
2F26,F66,F44,F45,F55,H11,H12,H22,HI6,H26,H66,Jll,J12,J22,J16,
3J26, J66, STIFF(MSIZE, MSIZE), MASS(MSIZE, MSIZE), AUO, BUO, CUO, EUO
4, GUO, AVO, BVO, CVO, EVO, GVO, AW, BW, CW, EW, GW, AJX, BJX, CJX, EJX, GJX,
5AJY, BJY, CJY, EJY, GJY, AUOMASS, BUOMASS, CUOMASS, EUOMASS, GUOASS,
6AVOMASS, BVOMASS, CVOMASS, EVOMASS, GVOMASS, AWMASS, BWMASS, CWMASS
7, EWMASS, GWMASS, AJXMASS, BJXMASS, CJXMASS, EJXMASS, GJXMASS, AJYMA
8SS, BJYMASS, CJYMASS, EJYMASS, GJYMASS, RHO, I2BARPR, I3BARPR, I5BAR
9,17,11, I4BAR
INTEGER P,Q

C THESE VARIABLES NEEDED FOR THE IMSL EIGENVALUE SOLVER.
DOUBLE PRECISION BETA(MSIZE), REVAL, OMEGA, AGEVAL, AGEVEC,
IREVEC(MSIZESQ)
DOUBLE COMPLEX ALPHA(MSIZE),EVAL(MSIZE),EVEC(MSIZE,MSIZE)

C---------------------------------------------------------------
C NUMBER OF TERMS IN THE ADMISSIBLE FUNCTIONS

NMAX = MMAX
C GENERATE GALERKIN EQUATIONS

I = 1
J= 1
DO 10 P = 1,MMAX
DO 10 Q = 1,NMAX
DO 20 M = 1,MMAX
DO 20 N = 1,NMAX

C---------------------------------------------------------------
C COMPUTE STIFFNESS MATRIX ELEMENTS
C---------------------------------------------------------------

IF (M .EQ. P .AND. N .EQ. Q) THEN
C

AUO = 0.0
BUO = 0.0
CUO =
1-( (8*F66+4*F12)*P*PI**3*Q**2-3*A12*B**2*H**2*P*PI)/(B*H**2*R
1)/12.0

EUO =
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1-( (4*A**2*A66*PI**2*Q**2+4*A11*B**2*P**2*PI**2)*R**2+A**2*D6
16*PI**2*Q**2)/(A*B*R**2)/16. 0
GUO =
1-( (4*A66+4*A12)*P*PI**2*Q*R**2-.D66*P*PI**2*Q)/R**2h16.0
AVO = 0.0
BVO = 0.0
CVO =
1-(4*A*F22*PI**3*Q**3-3*A*A22*B**2*H**2*PI*Q)/(B**2*H**2*R)/l
12.0
EVO=
1-( (4*A66+4*Al2)*P*PI**2*Q*R**2-D66*P*PI**2*Q)/R**2/16.0
GVO =
1-( (4*A**2*A22*PI**2*Q**2+4*A66*B**2*P**2*PI**2)*R**2+B**2*D6
16*P**2*PI**2)/(A*B*R**2)/16. 0
AW = 0.0
BW = 0.0
CW. =

1-( (16*A**4*H22*PI**4*Q**4+( (64*A**2*B**2*H66+32*A**I2*B**2*Hl
12) *P**2*PI**4+(g*A**4*A44*B**2*H**4-72*A**4*B**2*D44*H**2+14
14*A**4*B**2*F44)*PI**2)*Q**2+16*B**4*Hll*P**4*PI**4+(9*A**2*
1A55 *B**4*H**4-72*A**2*B**4*D55*H**2 +1 44*A**2 *B**4*F5 5) *P**2*
1PI**2)*R**2+16*A**4*J22*PI**4*Q**4+( 16*A**2*B**2*J66*P**2*PI
1**4-24*A**4*B**2*F22*H**2*PI **2 )*Q**2+9*A**4*A22*B**4*H**4) /
1 (A**3*B**3*H**4*R**2 )/36. 0
EW =
1-( (8*F66+4*Fl2)*P*PI**3*Q**2-3*A12*B**2*H**2*P*PI)/(B*H**2*R
1)/12.0
GW =
1-(4*A*F22*PI**3*Q**3-3*A*A22*B**2*H**2*PI*Q)/(B**2*H**2*R)'1
12.0
AJX

1-( ((16*A**2*H66+9*A**2*D66*H**4-24*A**2*F66*H**2)*PI**2*Q**2
1+( 16*B**2*H11+9*B**2*D11*H**4-24*B**2*F1I*H**2)*P**2*PI**2+9
1*A**2*A55*B**2*H**4-72*A**2*B**2*D55*H**2+144*A**2*B**2*F55)
1*R**2+( 16*A**2*J66-24*A**2*H**2*H66+9*A**2*F66*H**4) *PI**2*Q
1**2) /(A*B*H**4*R**2 )/36.0
BJX =

1-( ((16*A**2*H26+9*A**2*D26*H**4-24*A**2*F26*H**2)*PI**2*Q**2
1+( 16*B**2*H16+9*B**2*D16*H**4-24*B**2*F16*H**2 )*P**2*PI**2+9
1*A**2*A45*B**2*H**4-72*A**2*B**2*D45*H**2+144*A**2*B**2*F45)
1*R**2+( 16*A**2*J26-24*A**2*H**2*H26+9*A**2*F26*H**4) *PI**2*Q
1**2 )/(A*B*H**4*R**2 )/36.0
CJX = 0.0
EJX = 0.0
GJX = 0.0
AJY =

1-( ((16*A**2*H26+9*A**2*D26*H**4-24*A**2*F26*H**2)*PI**2*Q**2
1+( 16*B**2*Hl6+9*B**2*D16*H**4-24*B**2*Fl6*H**2) *P**2*PI**2+9
1*A**2*A45*B**2*H**4-72*A**2*B**2*D45*H**2+144*A**2*B**2*F45)
1*R**2+( 16*A**2*J26-24*A**2*H**2*H26+9*A**2*F26*I**4) *PI**2*Q
1**2 )/( A*B*H**4*R**2 )/36. 0
BJY
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1-( ((16*A**2*H22+9*A**2*D22*H**4-24*A**2*F22*H**2)*PT**2*Q**2
1+( 16*B**2*H66+9*B**2*D66*H**4-24*B**2*F66*H**2)*P**2*PI**2+9
1*A**2*A44*B**2*H**4-72*A**2*B**2*D44*H**2+144*A**2*B**2*F44)
1*R**2+( 16*A**2*J22-24*A**2*H**2*H22+9*A**2*F22*H**4) *PI**2*Q
1**2 )/( A*B*H**4*R**2 )/36. 0
CJY = 0.0
EJY = 0.0
GJY =0.0

C
ELSEIF (M .EQ. P .AND. 140D(N + Q,2) .NE. 0) THEN

C
AUG
1-(3*Dl6*H**2-4*F16)*N*P*PI*Q/((2*H**2*Q**2-2*H**2*N**2)*R)
BUG =

1-( (3*D66+6*D12)*H**2-4*F66-8*F2)*N*P*PI*Q/((6*H**2*Q**2-6*H
1**2*N**2) *R)
CUO = 0.0
EUG = 0.0
GUO 0.0
AVO =

1-( (6*A**2*D26*H**2-8*A**2*F26)*N*PI*Q**2+(4*B**2*F16-3*B**2*
1D16*H**2)*N*P**2*PI)/( (6*A*B*H**2*Q**2-6*A*B*H**2*N**2)*R)
BVG =

1-( (6*A**2*D22*H**2-8*A**2*F22)*N*PI*Q**2+(4*B**2*F66-3*B**2*
1D66*H**2)*N*P**2*PI)/( (6*A*B*H**2*Q**2-6*A*B*H**2*N**2)*R)
CVO = 0.0
EVO = 0.0
GVO = 0.0
AW=
1( (( (48*B**2*Hl6-36*B**z2*Fl6*H**2)*N*P**2+( 16*A**2*H26-12*A**
12*F26*H**2) *N**3 )*PI**2+( 9*A**2*A45*B**2*H**4-72*A**2*B**2*D
145*H**2+144*A**2*B**2*F45)*N)*Q*R**2+( (16*A**2*J26-12*A**2*H
1**2*H26)*N**3*PI**2+(g*A**2*B**2*D26*H**4-12*A**2*B**2*F26*H
1**2)*N)*Q)/( (9*A*B**2*H**4*Q**2-9*A*B**2*H**4*N**2)*R**2)
BW =
1( (( (32*B**2*H66+16*B**2*Hl2+(-24*B**2*F66-12*B**2*F12)*H**2)
1*N*P**2+(16*A**2*H22-12*A**2*F'22*H**2)*N**3)*PI**2+(9*A**2*A
144*B**2*H**4-72*A**2*B**2*D44*H**2+144*A**2*B**2*F44) *N )*Q*R
1**2+( (16*A**2*J22-12*A**2*H**2*H22) *N**3*PI**2+(9*A**2*B**2*
lD22*H**4-12*A**2*B**2*F22*H**2)*N)*Q)/( (9*A*B**2*H**4*Q**2-9
1*A*B**2*H**4*N**2 )*R**2)
CW = 0.0
EW = 0.0
GW = 0.0
AJX = 0.0
BJX = 0.0
CJx =

1-( (((48*B**2*H16-36*B**2*F16*H**2)*N*P**2+( 16*A**2*H26-12*A*
1*2*F26*H**2) *N**3) *PI**2+ (9*A**2*A45*B**2*EI**4-72*A**2*B**2*
1D45*H**2+144*A**2*B**2*F45)*N)*Q*R**2+( (16*A**2*J26-12*A**2*
1H**2*H26) *N**3*PI**2+( 9*A**2*B**2*D26*H**4-12*A**2*B**2*F26*
1H**2)*N)*Q)/( (9*A*B**2*H**4*Q**2-9*A*B**2*H**4*N**2)*R**2)
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EJX
1(3*Dl6*H**2-4*F16)*N*P*PI*Q/((2*H**2*Q**2-2*H**2*N**2)*R)
GJX =
1-( (3*B**2*D16*H**2-4*B**2*F16)*P**2+(6*A**2*F26-6*A**2*D26*H
1**2)*N**2)*PI*Q/( (6*A*B*H**2*Q**2-6*A*B*H**2*N**2)*R)
AJY = 0.0
BJY =0.0
CJY =

1-( (((32*B**2*H66+16*B**2*Hl2+(-24*B**2*F66-12*B**2*Fl2)*H**2
1)*N*P**2+(16*A**2*H22-12*A**2*F22*H**2)*N**3)*PI**2+(9*A**2*
lA44*B**2*H**4-72*A**2*B**2*D44*H**2+144*A**2*B**2*F44) *N) *Q*
1R**2+( (16*A**2*J22-12*A**2*H**2*H22)*N**3*PI**2+(9*A**2*B**2
1*D22*H**4-12*A**2*B**2*F22*H**2)*N)*Q)/( (9*A*B**2*H**4*Q**2-
19*A*B**2*H**4*N**2 )*R**2)
EJY =
1((3*D66+6*D12)*H**2-4*F66-8*Fl2)*N*P*PI*Q/( (6*H**2*Q**2-6*H*
1*2*N**2 )*R)
GJY =

1-( (3*B**2*D66*H**2-4*B**2*F66)*P**2+(8*A**2*F22-6*A**2*D22*H
1**2)*N**2)*PI*Q/( (6*A*B*H**2*Q**2-6*A*B*H**2*N**2)*R)

C ELSEIF(MOD(M + P,2) -NE. 0 -AND. N AEQ. Q) THEN
C

AUO
1-(3*A*D66*H**2-4*A*F66)*M*PI*Q**2/( (2*B*H**2*P**2-2*B*H**2*M
1**2)*R)
BUO =
1-(3*A*D26*H**2-4*A*F26)*M*PI*Q**2/( (2*B*8**2*?**2-2*B*H**2*I
1**2)*R)
CUO = 0.0
EUO = 0.0
GUO = 0.0
AVO =
1-(3*D66*H**2--4*F66)*M*P*PI*Q/((6*H**2*P**2-6*H**2*M**2)*R)
BVO =
1-(3*D26*H**2--4*F26)*M*P*PI*Q/( (6*H**2*P**2-6*H**2*M**2)*R)
CVO = 0.0
EVO = 0.0
GVO = 0.0
AW =
1( ((32*A**2*H66+16*A**2*Hl2+(-24*A**2*F66-12*A**2*F12)*H**2)*
1M*P*PI**2*Q**2+(16*B**2*Hll-12*B**2*Fll*H**2)*4**3*P*PI**2+(
19*A**2*A55*B**2*H**4-72*A**2*B**2*D55*H**2+ 144*A**2*B**2*F55
1)*M*P)*R**2+(16*A**2*J66-12*A**2*H**2*166)*M*P*PI**2*Q**2)/(
1 (9*A**2*B*H**4*P**2-9*A**2*B*H**4*M**2 )*R**2)

1(((48*A**2*H26-36*A**2*F26*H**2)*M*P*PI**2*Q**2i(16*B**2*H16
1-12*B**2*Fl6*H**2)*M**3*P*PI**2+(9*A**2*A45*B**2*H**4-72*A**
12*B**2*D45*H**2+144*A**2*B**2*F45)*M*P)*R**2+( 16*A**2*J26-12
1*A**2*H**2*H26) *M*P*PI**2*Q**2 )/( (9*A**2*B*H**4*P**2-9*A**2*
1B*H**4*M**2 )*R**2)
Cw = 0.0
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EW = 0. 0
GW = 0. 0
A.JX =0. 0
BJX = 0. 0
CJx =

1-( ((32*A**2*H66+16*A**2*H12+(-24*A**2*F66-12*A**2*Fl2)*H**2)
1*k*P*PI**2*Q**2+( 16*B**2*Hl1-12*B**2*Fl1*H**2)*M**3*P*PI**2+
I (9*A**2*A55*B**2*H**4-72*A**2*B**2*D55*H**2+144*A**2*B**2*F5
15)*M*P)*R**2+( 16*A**2*J66-12*A**2*H**2*H66)*M*P*PI**2*Q**2)/
1 ((9*A**2*B*H**4*P**2-9*A**2*B*H**4*M**2) *R**2)
EJX =
1(3*A*D66*H**2-4*A*F66)*P*PI*Q**2/( (2*B*H**2*P**2-2*B*H**2*M*
1*2)*R)
GJX =
1(3*D66*H**2-4*F66)*M*P*PI*Q/( (6*H**2*P**2-6*H**2*M**2)*R)
AJY = 0.0
BJY = 0.0
CJY =

1-( ((48*A**2*H26-36*A**2*F26*H**2)*M*P*PI**2*Q**2+( 16*B**2*Hl
16-12*B**2*Fl6*H**2)*M**3*P*PI**2+(9*A**2*A45*B**2*H**4-72*A*
1*2*B**2*D45*H**2+144*A**2*B**2*F45)*M*P)*R**2+( 16*A**2*J26-1
12*A**2*H**2*H26)*M*P*PI**2*Q**2)/( (9*A**2*B*H**4*P**2-9*A**2
1 *B*H**4*M**2 )*R**2)
EJY =
1(3*A*D26*H**2-4*A*F26)*P*PI*Q**2/( (2*B*H**2*P**2-2*B*H**2*M*
1*2)*R)
GJY =
1(3*D26*H**2-4*F26)*M*P*PI*Q/( (6*H**2*P**2-6*H**2*M**2)*R)

C
ELSEIF(MOD(M + P,2) -NE. 0 .AND. MOD(N + Q,2) -NE. 0) THEN

C
AUO = 0.0
BUO = 0.0
CU0 =
1( (16*B**2*Fl6*M*N*P**2+24*A**2*F26*M*N**3+8*B**2*Fl6*M**3*N)
1*PI**2-12*A**2*A26*B**2*H**2*M*N)*Q/( ((3*A*B**2*H**2*P**2-3*
1A*B**2*H**2*M**2)*PI*Q**2+(3*A*B**2*H**2*M**2*N**2-3*A*B**2*
1H**2*N**2*P**2 )*P ) *1?)
EUO =
1(4*A1G*N*P**2+4*A16*M**2*N)*Q/( (P**2-1**2)*Q**2-N**2*P**2+M*
1*2*N**2)
GUO=
1 (4*A16*B**2*M*P**2+4*A**2*A26*M*N**2 )*Q/( (A*B*P**2-A*B*M**2)
1*Q**2-A*13*N**2*P**2+A*B*4**2*N**2)
AVO = 0.0
BVO = 0.0
CVO =
1(16*A**2*F26*M*N*P*PI**2*Q**2+(B*A**2*F26*M*N**3-8*B**2*Fl6*
1M**3*N)*P*PI**2-12*A**2*A26*B**2*H**2*M*N*P)/( ((3*A**2*B*H**
12*P**2-3*A**2*B*H**2*M**2)*PI*Q**2+(3*A**2*B*H**2*M**2*N**2-
13*A**2*B*H**2*N**2*P**2) *PI )*R)
EVO
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1(4*A**2*A26*N*P*Q**2+4*Al6*B**2*M**2*N*P)/( (A*B*P**2-A*B*M**
12) *Q**2-A*B*N**2*P**2+A*B*M**2*N**2)
GV0
1(4*A26*M*P*Q**2+4*A26*M*N**2*P)/( (P**2-M**2)*Q**2-N**2*P**2+
1M**2*N**2)
AW = 0.0
BW = 0.0
CW =
1( ((256*A**2*H26*M*N**3+256*B**2*H16*M**3*N)*P*PI**2+(72*A**2
1*A45*B**2*H**4-576*A**2*B**2*D45*H**2+1152*A**2*B**2*F45 )*M*
IN*P) *Q*R**2+( 128*A**2*J26*M*N**3*P*PI**2-96*A**2*B**2*F26*H*
1*2*M*N*P)*Q)/( ( (*A**2*B**2*H**4*P**2-9*A**2*B**2*H**4*M**2)
1*Q**2-9*A**2*B**2*H**4*N**2*P**2+9*A**2*B**2*H**4*M**2*N**2)
1*R**2)
EW =
1( (8*A**2*F26*N**3+8*B**2*F16*M**2*N)*P*PI**2-4*A**2*A26*B**2
1*H**2*N*P)*Q/( ((A*B**2*E**2*P**2-A*B**2*H**2*M**2)*PI*Q**2+(
1A*B**2*H**2*M**2*N**2-A*B**2*H**2*N**2*P**2) *PI )*R)
GW =
1( (24*A**2*F26*M*N**2-8*B**2*Fl6*M**3)*P*PI**2-12*A**2*A26*B*
1*2*H**2*M*P)*Q/( ((3*A**2*B*H**2*P**2-3*A**2*B*H**2*M**2)*PI*
1Q**2+(3*A**2*B*H**2*M**2*N**2-3*A**2*B*H**2*N**2*P**2)*PI)*R
1)
AJX
1( 128*Hl6+72*D1S*H**4-192*F16*H**2)**4*P*Q/( (9*H**4*P**2-9*H
1**4*M**2 )*Q**2-9*H**4*N**2*P**2+9*H**4*M**2*N**2)
BJX =
1 (64*H66+64*H12+( 36*D66+36*D12) *H**4+( -96*F66--96*Fl2 )*8**2 )*M.
1*N*P*Q/( (9*H**4*P**2-9*H**4*M**2)*Q**2-9*H**4*N**2*P**2+9*HI*
1*4*M**2*N**2)
CJX = 0.0
EJX = 0.0
GJX =0.0
AJY =
1 (64*H66+64*H12+ (36*D66+36*D12) *H**4+ (-96*F66-96*F12) *H**2 )*M
1*zN*P*Q/( (9*H**4*P**2-9*H**4*M**2 )*Q**2-9*H**4*N**2*P**2+9*H*
1*4*M**2*N**2)
BJY =
1 (128*H26+72*D26*H**4-192*F26*H**2) *M*N*P*Q/( (9*H**4*P**2-9*H
1**4*M**2) *Q**2-9*H**4*N**2*P**2+9*H**4*M**2*N**2)
CJY =0.0
EJY = 0.0
GJY =0.0

C
ELSE

C U .
AUO = 0.0
BUO = 0.0
CUO = 0.0
EUO = 0.0
GUO = 0.0
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BVO = 0. 0
CVO = 0.0
EVO = 0. 0
GVO = 0.0
AW = 0.0
BW = 0.0
CW = 0.0
EW = 0.0
GW = 0.0
AJX = 0.0
BJX = 0.0
CJX = 0.0
EJX = 0.0
GJX = 0.0
AJY = 0.0
BJY = 0.0
CJY = 0.0
EJY = 0.0
GJY = 0.0
ENDIF

C ---------------------------------------------------------------
C STORE THESE TERMS IN THE STIFFNESS MATRIX
C ---------------------------------------------------------------

STIFF(I,J) = AUO
STIFF(I,J + MMAX * NMAX) = BUO
STIFF(I,J + 2 * MMAX * NMAX) = CUO
STIFF(I,J + 3 * MMAX * NMAX) = EUO
STIFF(I,J + 4 * MMAX * NMAX) = GUO
STIFF(I + MMAX * NMAX,J) = AVO
STIFF(I + MMAX * NMAX,J + MMAX * NMAX) = BVO
STIFF(I + MMAX * NMAX,J + 2 * MMAX * NMAX) = CVO
STIFF(I + MMAX * NMAX,J + 3 * MMAX * NMAX) = EVO
STIFF(I + MMAX * NMAX,J + 4 * MMAX * NMAX) = GVO
STIFF(I + 2 * MMAX * NMAX,J) = AW
STIFF(I + 2 * MMAX * NMAX,J + MMAX * NMAX) = BW
STIFF(I + 2 * MMAX * NMAX,J + 2 * MMAX * NMAX) = CW
STIFF(I + 2 * MMAX * NMAX,J + 3 * MMAX * NMAX) = EW
STIFF(I + 2 * MMAX * NMAXJ + 4 * MMAX * NMAX) = GW
STIFF(I + 3 * MMAX * NMAX,J) = AJX
STIFF(I + 3 * MMAX * NMAX,J + MMAX * NMAX) = BJX
STIFF(I + 3 * MMAX * NMAX,J + 2 * MMAX * NMAX) = CJX
STIFF(I + 3 * MMAX * NMAXJ + 3 * MMAX * NMAX) = EJX
STIFF(I + 3 * MMAX * NMAX,J + 4 * MMAX * NMAX) = GJX
STIFF(I + 4 * MMAX * NMAXJJ) AJY
STIFF(I + 4 * MMAX * NMAXJ + MMAX * NMAX) = BJY
STIFF(I + 4 * MMAX * NMAX,J + 2 * MMAX * NMAX) = JY
STIFF(I + 4 * MMAX * NMAX,J + 3 * MMAX * NMAX) = EJY
STIFF(I + 4 * MMAX * NMAX,J + 4 * MMAX * NMAX) = GJY

C ---------------------------------------------------------------
C COMPUTE MASS MATRIX ELEMENTS
C---------------------------------------------------------------
C FIRST CALCULATE THE MASS MOMENTS OF INERTIA.
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I2BARPR = RHO * H**3 / (15.0 * R)
I3BARPR = RHO * H**3 / (60.0 * R)
I5BAR = RHO * H**3 * 4.0 / 315.0
17 = RHO * H**7 / 448.0
I1 = RHO * H
I4BAR = RHO * H**3 * 17.0 / 315.0
AUOMASS = 0.0
BUOMASS = 0.0
CUOMASS = 0.0
EUOMASS = 0.0
GUOMASS = 0.0
AVOMASS = 0.0
EVOMASS = 0.0
GVOMASS = 0.0
EWMASS = 0.0
GWMASS = 0.0
BJXMASS = 0.0
EJXMASS = 0.0
GJXMASS = 0.0
AJYMASS = 0.0
EJYMASS = 0.0
GJYMASS = 0.0C
IF(NBUCVIB .EQ. 1) THEN

C
C VIBRATIONS PROBLEM - WE ARE LOOKING FOR THE NATURAL
C FREQUENCIES

IF(M .EQ. P .AND. N .EQ. Q) THEN
CVOMASS = -1.0 * (
I-A*I3BARPR*PI*Q/4.0
CWMASS = -1.0 * (
1 ( 16*A**2*I7*PI**2*Q**2+16*B**2*I7*P**2*PI**2+9*A**2*B**2*H**
14*I1)/(A*B*H**4)/36.0
AJXMASS = -1.0 * (
1A*B*I4BAR/4.0 )
BJYMASS = -1.0 * (
1A*B*I4BAR/4.0 )
BVOMASS = 0.0
BWMASS = 0.0
CJYMASS = 0.0
AWMASS = 0.0
CJXMASS = 0.0
ELSEIF(M .EQ. P .AND. MOD(N + Q,2) .NE. 0) THEN
BVOMASS = -1.0 * (
1-A*B*I2BARPR*N/(PI*Q**2-N**2*PI) )
BWMASS = -1.0 * (
1A*I5BAR*N*Q/(Q**2-N**2)
CJYMASS = -1.0 * (
1-A*I5BAR*N*Q/(Q**2-N**2)
CVOMASS = 0.0
CWMASS = 0.0
AJXMASS = 0.0
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BJYMASS = 0.0
AWMASS = 0.0
CJXMASS = 0.0
ELSEIF(MOD(M + P,2) .NE. 0 .AND. N .EQ.,Q) THEN
AWMASS = -1.0 * (
1B*I5BAR*M*P/(P**2-M**2)
CJXMASS = -1.0 * (
I-B*I5BAR*M*P/(P**2-M**2)
CVOMASS = 0.0
CWMASS = 0.0
AJXMASS = 0.0
BJYMASS = 0.0
BVOMASS = 0.0
BWMASS = 0.0
CJYMASS = 0.0
ELSE
BVOMASS = 0.0
CVOMASS = 0.0
AWMASS = 0.0
BWMASS = 0.0
CWMASS = 0.0
AJXMASS = 0.0
CJXMASS 0.0
BJYMASS 0.0
CJYMASS 0.0
ENDIF

C
* ELSE

C
C BUCKLING PROBLEM - WE ARE LOOKING FOR THE CRITICAL BUCKLING
C LOADS

BVOMASS = 0.0
CVOMASS = 0.0

* AWMASS = 0.0
BWMASS = 0.0
AJXMASS = 0.0
CJXMASS = 0.0
BJYMASS = 0.0
CJYMASS = 0.0
IF(M .EQ. P .AND. N .EQ. Q) THEN
CWMASS = -1.0 * (
1-B*P**2*PI**2/A/4.0
ELSE
CWMASS = 0.0
ENDIF

ENDIF
C ---------------------------------------------------------------
C STORE THESE TERMS IN THE MASS MATRIX
C ---------------------------------------------------------------

MASS(I,J) = AUOMASS
MASS(I,J + MMAX * NMAX) = BUOMASS
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MASS(I,J + 2 * MMAX * NMAX) = CUOMASS
MASS(I,J + 3 * MMAX * NMAX) = EUOMASS
MASS(I,J + 4 * MMAX * NMAX) = GUOMASS
MASS(I + MMAX * NMAX,J) = AVOMASS
MASS(I + MMAX * NMAX,J + MMAX * NMAX) =BVOMASS
MASS(I + MMAX * NMAX,J + 2 * MMAX * NMAX) = CVOMASS
MASS(I + MMAX * NMAXPJ + 3 * MMAX * NHAX) = EVOMASS
MASS(I + MMAX * NMAX,J + 4 * MMAX * NMAX) = GVOMASS
MASS(I + 2 * MMAX * NMAX,J) =AWMASS
MASS(I + 2 * MMAX * NMAX,J + k4MAX * NMAX) = BWMASS
MASS(I + 2 * MMAX * NMAX,J + 2 * MMAX * NMAX) = CWMASS
MASS(I + 2 * MMAX * NMAX,J + 3 * MMAX * NMAX) = EWMASS
MASS(I + 2 * MMAX * NMAX,J + 4 * MMAX * NMAX) = GWMASS
MASS(I + 3 *MMAX * NMAX,J) =AJXMASS
MASS(I + 3 * MMAX * NMAX,J + MMAJ( * NMAX) =BJXMASS
MASS(I + 3 * MMAX * NMAX,J + 2 * MMAX * NMAX) = CJXMASS
MASS(I + 3 * MMA( * NMAJ(,J + 3 * MMAX * NMAX) = EJXMASS
MASS(I + 3 * MMAX * NMAX,J + 4 * MMAX * NMAX) =GJXMASS
MASS(I + 4 * MMAX * NMAX,J) =AJYMASS
MASS(I + 4 * MMA( * NMAX,J + MMAX * NMAX) = BJYMASS
MASS(I + 4 * MMAX * NMAX,J + 2 * MMAX * NMAX) = CJYMASS
MASS(I + 4 * MMAX * NMAX,J + 3 * MMAX * NMAX) = EJYMASS
MASS(I + 4 * MMAX * NMAX,J + 4 * MMAX * NMAX) =GJYMASS

C ---------------------------------------------------------------
J =J+ 1

20 CONTINUE
I 1+1
J= 1

10 CONTINUE
C ---------------------------------------------------------------
C CALL THE IMSL LIBRARY SUBROUTINE. USE THE MASS AND STIFFNESS
C MATRICES AS INPUT AND FIND THE EIGENVALUES AND EIGENVECTORS.

CALL DGVCRG(MSIZE, STIFF, MSIZE, MASS, MSIZE, ALPHA, BETA. EVEC,
lMSIZE)
DO 40 1 = 1,MSIZE
IF(BETA(I) .NE. 0.0) THEN
EVAL(I) = ALPHA(I) /BETA(I)
ELSE
EVAL(I) = (1.OD+30 ,O.ODs00)

END IF
40 CONTINUE

IF(NBUCVIB .EQ. 1) THEN
C
C PRINT OUT THE FIRST 10 MODES FOR THE VIBRATION PROBLEM
C

DO 50 I = 1,10
REVAL =DREAL(EVALI)
AGEVAL =DIMAG(EVAL(I))
IF(ABS(AGEVAL) .GT. 1.OD-15) THEN
WRITE(2,115) I
ELSEIF(REVAL .GT. 1.OD+28) THEN
WRITE(2,125) I
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ELSEIF(REVAL .LT. 0.0) THEN
WRITE(2,120) I
ELSE
OMEGA = SQRT(REVAL)
WRITE(2, 130) I,REVAL,OMEGA
ENDIF

50 CONTINUE
C

ELSE
C
C PRINT OUT THE CRITICAL BUCKLING LOAD. THE CRITICAL
C BUCKLING LOAD IS THE EIGENVALUE WITH THE SMALLEST ABSOLUTE
C VALUE.
C

DO 55 I = 2,MSIZE
IF(ABS(DIt4AG(EVAL(I-1))) .GT. 1.OD-15) THEN
GO TO 55
END IF
IF(ABS(DREAL(EVAL(I))) .GT. ABS(DREAL(EVAL(I-1))) .AND. ABS(

1DREAL(EVAL(I-1))) .LT. 1.OD+28) THEN
WRITE(2,220) DREAL(EVAL(I-1))
END IF

55 CONTINUE
C

END IF
C
C PRINT OUT THE 1ST MODE OF THE DEFLECTION, W(X,Y), ALONG THE
C MIDLINES OF THE PANEL: X = A/2 AND Y =B/2
C
C PRINT OUT THE W EIGENVECTOR, CMN
C

II 1
IfRITE( 2,500)
WRITE(2, 510)
MNWMIN =1 + 2 * MMAX * NMAX
MNWMAX = 3 * MMAX * NMAX
DO 400 I1 MNWMIN, MNWMAX
REVEC(II) =DREAL(EVEC(I,1))
AGEVEC = DIMAG(EVEC(I,1))
IF(ABS(AGEVEC) .GT. 1.OD-15) THEN
WRITE(2,520) I,II,REVEC(II)
ELSE
WRITE(2,530) I,II,REVEC(II)
ENDIF
II = II + 1

400 CONTINUE
C
C DETERMINE W(X=A/2,Y)
C

ASTEP = A /50.0
BSTEP = B /50.0
XCOORD =A /2.0
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YCOORD =0.0
WRITE(2, 540)
WRITE(2, 542)

801 WMhODE =0.0
JJJ =1
DO 470 M = 1,MMAX
DO 472 N = 1,NMAX.
WMODE =WMODE + REVEC(JJJ)*SIN(M*PI*XCOORD/A)*SIN(N*PI*YCOOR
1D/B)
JJJ = JJJ + 1

472 CONTINUE
470 CONTINUE

WRITE(2, 550) YCOORD, WHODE
YCOORD = YCOORD + ESTEP
IF(YCOORD .GT. B) THEN
GO TO 800
ELSE
GO TO 801
ENDIF

C
800 YCOORD = B / 2.0
C
C DETERMINE W(X,Y=B/2)
C

XCOORD = 0.0
WRITE(2, 560)
WRITE(2, 570)

810 WHODE = 0.0
JJJ = 1
DO 480 M = 1, MMAX
DO 482 N = 1, NMAX
WMODE = WMODE + REVEC(JJJ)*SIN(M*PI*XCOORD/A)*SIN(N*PI*YCOOR
1D/B)
JJJ = JJJ + 1

482 CONTINUE
480 CONTINUE

WRITE(2, 550)XCOORD, WMODE
XCOORD = XCOORD + ASTEP
IF(XCOORD .GT. A) THEN
GO TO 850
ELSE
GO TO 810
END IF

C ---------------------------------------------------------------
115 FORMAT(/,9X, 13, iX, 'EIGENVALUE IS COMPLEX')
120 FORk4AT(/,9X, 13, iX, 'EIGENVALUE IS NEGATIVE')
125 FORMAT(/,9X, 13,liX, 'EIGENVALUE IS INFINITE')
130 FORk4AT(/,9X,13, lOX, D20. 13, 12X,D20. 13)
200 FORk4AT(/,9X, 13,lOX, D20. 13)
220 FORMAT(//,5X,'CRITICAL BUCKLING LOAD = ',iX,D20.i3)
500 FORMAT(//,5X,'W EIGENVECTOR, CMN, FOR 1ST MODE')
510 FORMAT(//,5X, 'M,N',1OX, 'CMN')
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520 FOR.MAT(/,5X, 14,2X, 14, 12X,D2O. 13,3X, 'COMPLEX')
530 FORMAT(I, 5X, 14, 2X, 14, 12X, D20. 13)
540 FORMAT(//,5X, 'DEFLECTION, W'(X=A/2,Y)')
542 FORMAT(//,5X,'Y (IN.)',1OX,'W(A/2,Y) (IN.)')
550 FORk4AT(/,5X,F6.2,11X,E15.8)
560 FORMAT(//,5X, 'DEFLECTION, W(X,Y=B/2)')
570 FORMAT(//,5X,'X (IN.)',1OX,'W(X,B/2) (IN.)')
850 RETURN

END
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Appendix E: Generating the Galerkin

Equations

This appendix gives an example for M=N=2 that shows how

Subroutine "GALERK" generates the stiffness and mass/inertia

matrices for simply supported and clamped boundary conditions.

If M=N=2, each degree of freedom is approximated by four terms,

and four equations are generated for each degree of freedom.

The following applies for simply supported boundary

conditions. The procedure for the degree of freedom u0 is

outlined as follows, starting with the four nested sums:

p-i q-1 1~ ~
Equation Integration Galerkin Equation
Number p q m n Case for u

1 1 1 1 1 1 2.52

1 2 none 0

2 1 none 0

2 2 2 2.57

2 2 1 1 none 0

1 2 1 2.52

2 1 2 2.57

2 2 none 0

3 2 1 1 1 none 0

1 2 2 2.57

2 1 1 2.52

2 2 none 0

4 2 1 1 2 2.57

1 2 none 0

2 1 none 0

2 2 1 2.52
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The same operations are carried out for vo , w, wx and wy using

their associated Galerkin equations for simply supported

boundary conditions. The equations are put into matrix format

by forming a new column at each m and n cycle, and forming a new

row at each p and q cycle. The resulting stiffness and

mass/inertia matrices for this example are (20x20). The

eigenvalues and eigenvectors are solved as shown in Eq (3.1)

The eigenvalue problem for the clamped boundary is

formulated in a similar manner. For u the format is:0

p-I. q-1 in- nl

Equation Integration Galerkin Equation
Number p q m n Case For u

1 1 1 1 1 1 2.64

1 2 2 2.69

2 1 3 2.74

2 2 4 2.79

2 2 1 1 2 2.69

1 2 1 2.64

2 1 4 2.79

2 2 3 2.74

3 2 1 1 1 3 2.74

1 2 4 2.79

2 1 1 2.64

2 2 2 2.69

4 2 1 1 4 2.79

1 2 3 2.74

2 1 2 2.69

2 2 1 2.64

164



Biblioaraphy

1. Bert, Charles W. and M. Kumar. "Vibration of Cylindrical
Shells of Bimodulus Composite Materials," AIAA Journal:
147-154 (May 1981).

2. Beyer, William H. CR Standard Mathematical Tables.27
Boca Raton: CRC Press, Inc.,1984.

3. Bowlus, John A. The Determination 2f the Natural
Frequencies And MQd Shapgs Eor Anisotropic Laminated
Plates In din the Effects f Shear Deformation and
Rotary Inerti. MS Thesis, AFIT/GA/AA/85S-1. School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, September 1985.

4. Bowlus, John A., A.N. Palazotto, and J.M. Whitney.
"Vibration of Symmetrically Laminated Rectangular Plates
Considering Deformation and Rotary Inertia," AIAA 4
Journal.25: 1500-1511 (Nov 1987).

5. Brush, Don 0. and Bo 0. Almroth. Buckling of Bars. Plates.
and Shells. McGraw-Hill, 1975.

6. Bushnell, D. Computerized Buckling Anas of Shells.
Dordrecht, The Netherlands: Martinus Nijhoff Pub.,1985.

7. Chajes, Alexander. Principles f Structural Stability
Theory. Englewood Cliffs, NJ: Prentice-Hall, Inc.,1974

8. Dennis, Capt Scott T. Larae Displacement and Rotational
Formulation for Laminated Cylindrical Shells Including
Parabolic Transverse Shear. PhD Dissertation. School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, June 1988.

9. Jones, Robert M. Mechanics Qf Composite Materials. New
York: Hemisphere Publishing Corp, 1975.

10. Koiter, W.T. "A Consistent First Approximation in the
General Theory of Thin Elastic Shells," ProQ Sym on Theory
2f Thin Elastic Shells: 12-33 Amsterdam,North Holland, 1960.

11. Meirovitch, Leonard. Analytical Methods in Vibrations.
New York: The MacMillan Company, 1967.

12. Mindlin, R.D. "Influence of Rotary Inertia and Shear on
Flexural Motions of Isotropic Elastic Plates," Journ 2f
Applied Mech.18 1951. 1

165



13. Palardy, Real F. The Buckling and Vibration of Composite
Plates Using the Levy Method Considering Shear Deformation
nd Rotar Inertia. MS Thesis, AFIT/GAE/AA/87D-16. School

0 of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1987.

14 Reddy, J.N. Enery =d Variational Methods in Applied
Mechanics. John Wiley and Sons, 1984.

15. Reddy, J.N. "A Simple Higher-Order Theory for Laminated
Composite Plates," Journ of Applied Mech.51: 745-752 (Dec
1984)

16. Reddy, J.N. and C.F. Liu "A Higher-Order Shear Deformation
Theory of Laminated Elastic Shells," Int J Eng Sci.23:
319-330 (Mar 1985)

17. Reddy J.N., and N.D. Phan "Stability and Vibration of
Isotropic, Orthotropic, and Laminated Plates According
to a Higher Order Shear Deformation Theory," Journ of
Sound and Vibration.98(2): 157-170 (1985).

18. Reissner, E. "The Effect of Transverse Shear Deformation
on the Bending Of Elastic Plates," Journ of Applied Mech.
(1945)

19. Saada, Adel S. Elasticity: n =d Applications. New
York: Pergamon Press, 1974.

20. Shames, Irving H. and Clive L. Dym Enery and Finite
Element Methods in Structural Mechanics. New York: McGraw
Hill Book Company, 1985.

* 21. Soldatos, K.P. "Buckling of Axially Compressed
Antisymmetric Angle-Ply Laminated Circular Cylindrical
Panels According to a Refined Shear Deformable Shell
Theory," PVP: 63-71, (1986)

22. Wang, Chi-Teh. Applied Elasticity. New York: McGraw-Hill
Book Company, Inc, 1953.

23. Whitney, James M. "Buckling of Anisotropic Laminated
Cylindrical Plates," AIAA Juran.22A11: 1641-1645 (Nov 1984)

24. Whitney, James M. Structural Aalysis f Laminated
Anisotropic Plates. Lancaster, Pennsylvania: Technomic
Publishing Company, Inc, 1987.

25. Vax Unix MACSYMA Reference Manual. Massachusetts Institute
of Technology: Symbolics,Inc. (Oct 1985)

166

.. ..Iii i n m ~ . . . .



Vita

Captain Peter E. Linnemann was born

He graduated from i High School,

in June 1979. He attended Panama

Canal College from 1979-1980 and then the University of Texas at

Austin, from which he received the degree of Bacholor of Science

in Aerospace Engineering in May 1983. After graduating he went

to Officer Training School and received a commission in the USAF

on 9 September 1983. His first assignment was at the Foreign

Technology Division &t Wright-Patterson AFB, Ohio. There he

worked as a Soviet long range bomber analyst. He entered the

School of Engineering, Air Force Institute of Technology, in

June 1987.

187



UNCLASS IF IED
SECURITY CLASSIFICATION OF THIS PAGE

Form Appoved

REPORT DOCUMENTATION PAGE oj No. 070" 1O

1. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
OE Approved for public release;

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GA/AA/88D-06

6a. NAME OF PERFORMING ORGANIZATION 16b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

School of Engineering __AFIT/ENY

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology

Wright-Patterson AFB OH 45433-6583

B. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

AFOSR

6c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

Bolling AFB Wash DC ELEMENT NO. NO. NO 1ACCESSION NO.

11. TITLE (Include Security Classification)
(U) VIBRATION AND BUCKLING CHARACTERISTICS OF COMPOSITE CYLINDRICAL PANELS
INCORPORATING THE EFFECTS OF A HIGHER ORDER S1EAR THEORY

12. PERSONAL AUTHOR(S)
Peter E. Linnemann, Capt, USAF

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
MS Thesis I FROM TO 1988 December /79\

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necessary and identify by block number)
FIELD GROUP SUB-GROUP Composite, Laminate, Cylindrical, Panel, Vibration,
20 04 Buckling, Parabolic, Shear, Transverse, Rotary Inertia

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Advisor: Dr Anthony Palazotto
Professor of Aerospace Engineering

ABSTRACT ON BACK

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
1UNCLASSFIED/JNLIMITED [ SAME AS RPT. ,3 DTIC USERS UNCLASSIFIED

2Za. NAME Of RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
Dr Anthony Palazotto (513) 255-3517 1 ITIEN

DO Form 1473, JUN 96 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED



Block 19 Abstract

An analytical study is conducted to determine the fundamental frequencies

and critical buckling loads for laminated anisotropic circular cylindrical
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are derived for the laminate. A set of five coupled partial differential
equations of motion and boundary conditions are derived and then solved using
the Galerkin Technique. Simply supported and clamped boundary conditions are
investigated.

The Galotkin method is tested for convergence to exact solutions.
Comparisons with Donnell shell solutions are conducted. The effects of
transverse shear deformation and rotary inertia are examined by comparing the
resultv with classical solutions, where applicable. The radius of curvature
is varied to determine the effects of membrane and bending coupling.

c It is found that the Galerkin Technique converges for all panel
conigurations investigated; additionally, it is found that buckling problems
need more terms in the approximation than vibration problems to obtain proper
convergence. The theory compares exactly with the Donnell solutions, which
are valid up to h/R = 1/50. As expected, as length to thickness ratios are
reduced, shear deformation effects significantly lower the natural frequencies
and buckling loads. Analysis also shows that rotary inertia effects are very
small. Finally, as h/R is varied from 0 (flat plate) to 1/5 (maximum limit),
the frequencies and buckling loads increase due to membrane and bending coupling.

r


